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1 Introduction

This software implements and extends the network model described in [1]. Em-
bedded in the hyperbolic plane, these networks naturally exhibit two common
properties of real-world networks, namely power-law node degree distribution
and strong clustering. Moreover, other well-known graph ensembles, such as the
soft configuration model (SCM), Erdős-Rényi (ER) graphs, or random geomet-
ric graphs (RGGs), appear as degenerate regimes in the model. Table 1 shows
all the regimes in the model. Each of them is defined by two parameters: γ,
which is the expected exponent of the degree distribution, and temperature T ,
the parameter controlling the strength of clustering in the network.

aaaa
γ T 0 (0,∞) ∞
[2,∞) Hyperbolic RGGs Soft hyperbolic RGGs Soft configuration model
∞ Spherical RGGs Soft spherical RGGs Erdős-Rényi

Table 1: Regimes in the model.

The user selects a regime by specifying appropriate values of γ and T . If
γ > 10, then γ is considered infinite. If T > 10, then T is considered infi-
nite. The threshold values of these infinities can be modified by changing the
HG INF TEMPERATURE and HG INF GAMMA definitions in the package.

The full list of input parameters and their default values is as follows:

N - Number of nodes; default N = 1000.

k̄ - Expected average degree; default k̄ = 10.

γ - Expected power-law exponent of the degree distribution; default γ = 2.

T - Temperature; default T = 0.

ζ - Square root of the hyperbolic plane curvature K = −ζ2; default ζ = 1.

s - Random seed; default s = 1.

If T ≥ HG INF TEMPERATURE and γ < HG INF GAMMA, then the ζ pa-
rameter is interpreted as the η = ζ/T parameter in the soft configuration model
regime. Its default value is η = 1.

Given the input parameters, the graph generation process consists of three
steps:

1. Compute the internal parameters, such as the radius R of the hyperbolic
disk occupied by nodes, as functions of the input parameter values, Sec-
tions 3,4.

2. Assign to all nodes their angular and radial coordinates on the hyperbolic
plane, Section 2.

3. Connect each node pair by an edge with probability (the connection proba-
bility), which is a function of the coordinates of the two nodes, Sections 3,4.
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2 Sampling node coordinates

The assignment of node coordinates is done as follows in all the six regimes.

2.1 Angular coordinates

Angular coordinates θ of nodes are assigned by sampling them uniformly at
random from interval [0, 2π), i.e., the angular node density is uniform ρ(θ) =
1/(2π).

2.2 Radial coordinates

Radial coordinates r ∈ [0, R], where R is the radius of the hyperbolic disk,
are sampled from the following distribution, which is nearly exponential with
exponent α > 0,

ρ(r) = α
sinhαr

coshαR− 1
≈ αeα(r−R) ∼ eαr. (1)

The calculation of internal parameter R is described in detail below; it is differ-
ent in different regimes. Internal parameter α depends on the expected power-
law exponent γ and on the curvature of the hyperbolic space ζ =

√
−K. For

temperatures T ≤ 1, this relationship is given by

γ = 2
α

ζ
+ 1, (2)

while for T > 1 it becomes
γ = 2

α

ζ
T + 1. (3)

To sample radial coordinates r according to the distribution in Eq. (1), the
inverse transform sampling is used: first a random value Ui is sampled from the
uniform distribution on [0, 1], and then the radial coordinate of node i is set to

ri =
1

α
acosh (1 + (coshαR− 1) Ui) , for i = 1, .., N . (4)

3 Finite γ ≥ 2

3.1 T ∈ (0,∞): Soft hyperbolic random geometric graphs

This is the most general regime in the model, from which all other regimes can
be obtained as limit cases. The connection probability in this case is

p(x) =
1

1 + eβ(ζ/2)(x−R)
, (5)

where β = 1/T , and R is the radius of the hyperbolic disk occupied by nodes.
The hyperbolic distance x between two nodes at polar coordinates (r, θ) and
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(r′, θ′) is given by

x =
1

ζ
arccosh (cosh ζr cosh ζr′ − sinh ζr sinh ζr′ cos ∆θ) , (6)

where ∆θ = π − |π − |θ − θ′|| is the angular distance between the nodes. To
calculate the expected degree of a node at radial coordinate r, without loss of
generality its angular coordinate can be set to zero, θ = 0, so that its expected
degree can be written as

k̄(r) =
N

π

∫ R

0

ρ(r′)

∫ π

0

p(x) dθ′dr′. (7)

The expected average degree in the network is then

k̄ =

∫ R

0

ρ(r) k̄(r)dr =
N

π

∫ R

0

ρ(r)

∫ R

0

ρ(r′)

∫ π

0

p(x) dθ′dr′dr. (8)

Given user-specified values of input parameters N , β = 1/T , ζ and k̄, the last
equation is solved for R using the bisection method in combination with numeric
evaluation of the integrals in the equation. The MISER Monte Carlo algorithm
from the GSL library is used to compute the multidimensional integral in Eq. (8).
The iterative bisection procedure to find R stops when the difference between
the value of the computed integral in Eq. (8) and the target value of k̄ is smaller
than a threshold that is set to 10−2 by default.

3.2 Limit T → 0: Hyperbolic random geometric graphs

In the T → 0 (β →∞) limit, the connection probability in Eq. (5) becomes

p(x) = Θ(R− x), (9)

where Θ(x) is the Heaviside step function, meaning that two nodes are con-
nected if the hyperbolic distance x between them is less than R, or they are
not connected otherwise. The expected average degree in the network is given
by the same Eq. (8), but with p(x) in the last equation. The value of R is
determined using the same procedure as in Section 3.1. The only difference is
that function p(x) is given by Eq. (9).

3.3 Limit T →∞: Soft configuration model

According to Eq. (3), in the T → ∞ limit with finite α, to have finite γ,
curvature should also go to infinity, ζ → ∞, such that η = ζ/T is finite, and
instead of Eq. (3) one gets

γ = 2
α

η
+ 1. (10)

More importantly, one can show that as a result of ζ → ∞, the expression
for hyperbolic distance x between two nodes in Eq. (6) degenerates to

x = r + r′, (11)
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meaning that in the T → ∞ regime the angular coordinates are completely
ignored. The connection probability becomes

p(r, r′) =
1

1 + e(η/2)(r+r′−R)
, (12)

and the expected average degree in the network is

k̄ = N

∫ R

0

ρ(r)

∫ R

0

ρ(r′) p(r, r′) dr′dr. (13)

The value of R is determined using the same combination of the bisection
method and numeric integration as in the previous section, except it is applied
to Eq. (13).

4 Infinite γ →∞
While in the T → ∞ limit the angular coordinates are ignored, in the γ → ∞
limit the radial coordinates are ignored. One can show it formally by observing
that in this limit the radial node density approaches a delta function—all nodes
are placed at the boundary at infinity of the hyperbolic plane, meaning that
only angular coordinates determine distances between nodes.

4.1 T ∈ (0,∞): Soft spherical random geometric graphs

In this most general case with infinite γ, one can show that the connection
probability in Eq. (5) degenerates to

p(θ, θ′) =
1

1 + λ
(

∆θ
π

)β , (14)

where ∆θ = π− |π− |θ− θ′|| is the angular distance between the two nodes as
before, while λ is a parameter controlling the average degree k̄ in the network,
analogous to R in the regimes with finite γ. Without loss of generality we can
set θ = 0, so that the expression for k̄ is

k̄ =
N

π

∫ π

0

1

1 + λ
(
θ′

π

)β dθ′ = N 2F1(1, T ;T + 1;−λ), (15)

where 2F1 is the Gauss hypergeometric function, and T = 1/β. In the special
case with T = 1, the last expression simplifies to

k̄

N
=

log(1 + λ)

λ
. (16)

If T 6= 1, the hypergeometric function in Eq. (15) cannot be evaluated using the
GSL library, because the 2F1 evaluation in the library is implemented only for
the case where the fourth argument of the function (−λ in Eq. (15)) is between
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−1 and 1, while for sufficiently large N/k̄, λ is always larger than 1 in Eq. (15).
To avoid this difficulty, the following transformation is used [2]:

2F1(1, T ;T + 1;−λ) =
1

λ+ 1

T

T − 1
2F1(1, 1; 2− T ;

1

λ+ 1
) +

1

λT
πT

sinπT
=

k̄

N
,

(17)
If T > 1 is an integer, the second term in (17) diverges due to the sin function in
the denominator, while the first term diverges because the third parameter of the

2F1 function is a non-positive integer. Hence, for integer values of temperature
T > 1, their value is approximated by T + ε, where ε is set to 10−6 by default.
The error caused by this approximation is negligible. Equation (17) (or (16) if
T = 1) is then numerically solved for λ using the bisection method, yielding the
target value of k̄ in Eq. (15).

4.2 Limit T → 0: Spherical random geometric graphs

One can see from Eq. (17) that the solution for λ at small T � 1 scales with
N/k̄ as λ = (N/k̄)β , β = 1/T . Therefore for β � 1 the connection probability
in Eq. (14) can be written as

p(θ, θ′) =
1

1 +
(
N
k̄

∆θ
π

)β , (18)

which in the β →∞ limit becomes

p(θ, θ′) = Θ

(
1− N∆θ

k̄π

)
, (19)

meaning that two nodes are connected if the angular distance ∆θ between them
is smaller than πk̄/N ,

∆θ < π
k̄

N
, (20)

or they are not connected otherwise. This connectivity threshold ensures that
the expected average degree in the network is k̄.

4.3 Limit T →∞: Erdős-Rényi graphs

In this most degenerate regime, both angular and radial coordinates are com-
pletely ignored. This regime is formally achieved by keeping both α and ζ finite
while letting T → ∞. One can then show that the connection probability in
Eq. (5) degenerates to

p(x) =
1

1 + N
k̄

, (21)

which for sparse graphs with k̄ � N tends to p(x) = k̄/N , i.e., the connection
probability in classical (Erdős-Rényi) random graphs.
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5 Summary

This section summarizes the implementation details of the six regimes of the
model. In all the six cases, the angular and radial node coordinates are assigned
using the very similar procedures described in Section 2. The main differences
are only in the connection probabilities p(x), and in how the parameters con-
trolling the average degree (e.g., R or λ) are computed.

aaaa
γ T 0 (0,∞) ∞
[2,∞) 1 2 3
∞ 4 5 6

Table 2: Regimes of the model with numbers referring to the list below.

1. Hyperbolic RGGs

Connection probability: Eq. (9): each pair of nodes is connected if and
only if the hyperbolic distance x between the nodes is smaller than
radius R.

Solve R: Numerical integration of Eq. (8) with p(x) in Eq. (9).

2. Soft hyperbolic RGGs

Connection probability: Eq. (5).

Solve R: Numerical integration of Eq. (8) with p(x) in Eq. (5).

3. Soft configuration model

Connection probability: Eq. (12).

Solve R: Numerical integration of Eq. (13).

4. Spherical RGGs

Connection probability: Each pair of nodes is connected if and only if
the angular distance between them is smaller than the threshold in
Eq. (20).

5. Soft spherical RGGs

Connection probability: Eq. (14).

Solve λ: Numeric solution of Eq. (17).

6. Erdős-Rényi

Connection probability: Eq. (21).
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