Distributed Virtual Network Operations Center (DVNOC) -Towards Federated & Customer-focused Cyberinfrastructure

Harika Tandra, Software Engineer GLORIAD

(presentation based on slides prepared by Greg Cole, Principal Investigator, GLORIAD project)

What is GLORIAD ?

A cooperative R&E network ringing the northern hemisphere linking scientists, educators and students in Russia, USA, China, Korea, Netherlands, Canada, the Nordic countries – and soon India, Egypt, Singapore – and others with specialized network services; co-funded, co-managed by all international partners

Variously sized circuits/services arounnd northen hemisphere

Hybrid circuit-(L1/L2) and packetswitched services(L3)

Collaborative International Program to Develop/Deploy advanced Cyberinfrastructure and appliations between partnering countries (and others) as effort to expand science, education and cultural cooperation and exchange

GLORIAD MAP

GLORIAD mission

Connecting the unconnected Setter informing science and education community (and general public) about global opportunities for collaboration Promoting decentralized, distributed, transparent and open approach to global R&E networking

DVNOC Tool

DVNOC

Addresses need for all levels of cyberinfrastructure operators (and users) to collaborate on decentralized, distributed and reliable operations of links and services

Focus on customer-based performance

Large development effort on part of Chinese, Dutch, Korean, Nordic and US (and we hope, soon, other national) GLORIAD teams

DVNOC Contd..

 Web based application
Developed using Flash/Flex platform
Current version: <u>http://viz.gloriad.org/</u> <u>dvnoc/dvnoc.html</u>

DVNOC

DVNOC - GLORIAD Earth Tab

DVNOC - GLORIAD Earth Tab

Wednesday, February 9, 2011

Performance Measurement

We're trying to shift towards "customer-based performance" in all areas of cyberinfrastructure deployment

3-D plot of throughput , loss & RTT using flow data from US to CSTNET over a 24hr period on GLORIAD network

"Needle" chart i.e., a blue needle (topped by a black marker) illustrates one flow

Identifying Problem Areas in Global, National, Regional, Local, Campus Networks

- Problem: network operators have insufficient knowledge of nor relationship with each other (local/campus, regional, national, global operators) (and R&E customers less so)
- Solution: encourage common view towards customer-based performance, lead effort towards community-developed shared performance measurement instrumentation and tools for joint engineering management (dvNOC)
- (we will realize many other benefits from this community-building exercise)

Emphasis on Customer Performance

We wish to know of individual customerbased performance problems before customer can call

We're developing statistically important base of information about where there are weaknesses in our global/regional/ regional/local networks

Based primarily (at moment) on measurements of packet retransmits

Automated system to debug under-performing flows in wide area networks

Throughput vs Loss (contd..)

3-D plot of throughput derived from loss & RTT using Mathis formula

•We can see that the decrease in rate is steeper with the increase in loss than the increase in RTT

•Half the loss rate gives throughput increase of ~41%

Hybrid monitoring/data collection system

- Passive monitoring sub-system: Filters network flow data to identify under-performing flows
- 2. Active monitoring sub-system: Collects performance statistics of individual routers

**All the IPs are anonymized in the following slides

Passive monitoring subsystem : Flow filter

% retransmissions per bytes transfered > 0.01
Bytes transfered > 5 MB
Frequency > 4 hours. Same (ip_s, ip_d) pair is

not labeled as under-performing for the minimum time period set by the frequency parameter

Passive monitoring sub-system

Filter the netflow records to identify underperforming flows

	ip_src	ip_dst	MB	%rtpct	starttime	endtime
	xx.xx.77.70	xx.xx.138.244	0.2137	0	2009-10-18 20:53:43	2009-10-18 20:58:50
	xx.xx.16.49	xx.xx.4.71	0.2101	0	2009-10-18 20:53:42	2009-10-18 20:58:51
	xx.xx.189.65	xx.xx.224.75	213.3897	7 0	2009-10-18 20:15:22	2009-10-18 20:58:51
	хх.хх.3.226	xx.xx.244.210	7.3098	0.9866	2009-10-18 20:56:50	2009-10-18 20:58:51

MB - MBytes transfered, %rtpct - Percentage retransmissions per byte

Active monitoring sub-system

- For each under-performing flow identified, MTR runs are triggered to source and destination IPs
- Triggered in near-real-time to the flow detected. Thus, test packets are triggered in network conditions similar to those seen by the real traffic
- Combining the two gives approximate end-to-end performance

Data collected

ip_s		ip_d	MBy	tes rtpct	start	time		endtime	1	keyid	
xx.3.2	226	xx.244.2	10 7	.31 0.98	37 2009	-10-18	20:56:50	2009-10	-18 20:58:5	1 28995	
									/		
erial r	node	ip	loss pct	packets s	avg rtt	best rtt	twrst rtt	target ip	masterkevid	target Ibl	_
1	192.3	1.99.97	0	50	4.7	0.4	12.8	xx.244.210	28995	Destination	
2	192.3	1.99.146	0	50	2.3	1.3	17.7	xx.244.210	28995	Destination	
3	216.2	4.186.5	0	50	28.8	27.2	49.3	xx.244.210	28995	Destination	
4	192.4	3.217.137	0	50	28.6	26.3	62.8	xx.244.210	28995	Destination	Resultse
5	192.4	3.217.114	0	50	27.2	27.1	27.7	xx.244.210	28995	Destination	
6	128.1	17.243.75	0	50	27.8	27.2	41.7	xx.244.210	28995	Destination	
7	???		100	50) 0	0	0	xx.244.210	28995	Destination	
1	192.3	1.99.97	0	50	5.3	0.4	13.5	xx.3.226	28995	Source	
2	192.3	1.99.166	0	50	189.9	189.8	196.3	xx.3.226	28995	Source	
3	159.2	26.254.165	0	50	190.2	189.9	203.6	xx.3.226	28995	Source	
4	159.2	26.254.253	0	50	228.8	228.8	229.1	xx.3.226	28995	Source	
5	159.2	26.254.29	0	50	230.8	228.9	317.8	xx.3.226	28995	Source	
6	159.2	26.254.190	2	50	229.6	229	254.1	xx.3.226	28995	Source	
7	159.2	26.254.170	4	50	229.4	229.2	229.8	xx.3.226	28995	Source	
8	159.2	26.46.230	2	50	229.6	229.4	230.3	xx.3.226	28995	Source	
9	???		100	50) 0	0	0	xx.3.226	28995	Source	

Result of MTR runs to source and destination of an under-performing flow

Data interpretation

Network graphs show individual router behavior cutting across several MTR runs, to different target IPs

Thus, giving a snap shot of network router topology seen by the under-performing flows

Example network graphs for a few end hosts in U.S.

A faulty node

r₂ is defined as a faulty node if

probability of loss (*l_i/t_i*) is high and is uniformly distributed across all its branches

 $l_i = #$ of runs via r_2 to r_i seeing loss $t_i = total #$ of runs via r_2 to r_i

Network Graph analysis

Developed cost functions to learn the probability of each node being faulty

Supervised pattern classification algorithms are used to learn the accuracy of the cost functions

Wednesday, February 9, 2011

Network-monitoring data collection

Packeteer box at Chicago

- Passively monitors traffic to/from GLORIAD router in Chicago
- Exports extended NetfloTextcords
 - Bytes retransmitted
 - Application classification

Replacing Packeteer with open source monitoring box

- Commercial box
- Limited to 1G line speed

Nprobe Monitoring box

GOALS

- Network utilization and performance measurement box running at least at 10G line speed
- Emit extended netflow records including retransmissions, application classification and more

HARDWARE

- Dell PowerEdge R410 Server 8 core intel processor
- 10GE Intel Fiber Card

Nprobe software

Nprobe is open source software developed by Luca Deri (<u>http://www.ntop.org/</u> <u>nProbe.html</u>)

Development effort is in progress with help of Luca Deri and CSTNet (GLORIAD-China partners)

Current version exports retransmissions data

Next steps: Better application classification

Integrating data from other tools

GLORIAD Perfsonar nodes

Currently deployed at Seattle, Chicago and Singapore

Soon nodes will be installed in Amsterdam and Hong Kong

Looking for ways to integrate/visualize perfsonar data in DVNOC

Conclusion

Common platform to share network operations, utilization, performance and security data

Addresses "disconnect" between all the different levels of network operators

Thank you.