Subnet Based Internet Topology Generation

Mehmet Burak AKGÜN

with Mehmet Hadi GÜNEŞ

ISMA 2011

Workshop on Active Internet Measurements

- Introduction
- Related Work
- Methodology
 Algortihm
- Results
- Future Work

Image: NoticeImage: Notice</

- Performance of network protocols are dependent on the underlying topology
 - network researchers use synthetic topologies in simulations
- Researchers need realistic synthetic network topologies

which imitates the characteristics of the Internet

Image: Note of the second se

- Before 1999
 - Strong belief that "Internet is hierarchical"
- 1999-2001
 - Discovery of Internet's degree distribution to be power law
- 2001-
 - The degree distribution characteristics is not sufficient

- Two types of hierarchical graphs(n-level, TS)
 - Transit-stub reproduces the hierarchical structure of Internet
- 1. A connected random graph is generated
- 2. Each node is considered as a transit domain
 - each transit domain is expanded to form another connected random graph
- 3. A number of random graphs are generated as **stubs** and connected to transit nodes

- Power law distribution due to
 - preferential connectivity and incremental growth
- Skewed node placement
 - area is divided into squares
 - nodes are distributed among squares
- Locality based preferential network connections
 - uses Waxman probabilistic function
- Node degree distribution is preserved

- A systematic approach to analyze and synthesize *dK*-series graphs
- Increasing k better models the Internet, whereas increases computational complexity
- 1K graphs model degree distribution

 is not sufficient
- 2K graphs match joint degree distribution

- Introduction
- Related Work
- Methodology
 Algorithm
- Results
- Future Work

Motivation

- Subnetworks are the bricks of the Internet
 - connected nodes form cliques
- Ignoring subnets during generation misses important characteristics
 - topologies are composed of point to point links
 - misrepresent the Internet
- We emphasizes the distinction between
 - the observed degree distribution and
 - the real degree distribution (i.e., interfaces)

 Ignoring subnets results in a network of pointto-point links only.

Network Topology Generation

Objectives

M.

- Subnet Distribution
- Observed Degree distribution
- Alias Distribution

Subnet Centric Approach

- Number of nodes (n_{user})
- Subnet distribution for this many nodes
 - Scale the values of the distribution with

 $n_{user} / n_{reference}$

- Large subnets may disappear in small networks
 - distribute their ratio to closest subnet levels
- Create bins for each subnet

- place nodes into bins considering occupancy rate

Image: Subnet Distribution

- Subnet distribution data is obtained from Cheleby project
- For an 147K node network (n_{reference})

– 385K IP addresses (interfaces)

	/24	/25	/26	/27	/28	/29	/3X
Number of Occurrence	4	36	184	1294	8836	93110	58011
Distribution (%)	0.002	0.022	0.11	0.80	5.47	57.66	35.92
Completeness (%)	26	30	28	27	27	39	100

Image: The second sec

Continue until n=10 Consider power law distribution

Raw Degree

Distribution

1

122

- Introduction
- Related Work
- Methodology
 Algortihm
- Results
- Future Work

Degree Distribution before Merging

	/24	/25	/26	/27	/28	/29	/3x
Completeness	0	0.33	0.21	0.31	0.51	0.54	1
# of nodes per subnet	0	41	13	9	7	3	2

M

- By merging 3 nodes of /25 , /26 and /27 we can have a single node of degree:
 - Raw Degree = 41+13+9 = 63

! Merging can be performed between nodes of distinct subnets

Image: Subnet Distribution

• Although many merge operations are done, subnet distribution is still satisfied.

	/24	/25	/26	/27	/28	/29	/3X
Number of Occurence	0	9	51	128	313	18062	79674
Distribution(%)	0	0.01	0.05	0.13	0.32	18.39	81.10
Completeness(%)	0	33	21	31	51	54	100

CNL 2010

Results

- Both *subnet distribution* and *interface distribution* can be matched
 - generates more realistic topologies
- Our method requires measurement data
 - subnet distributions
 - interface distribution
 - exponent of observed degree distribution

Work in Progress

- Matching
 - Characteristic path length
 - rewring
 - Assortativity
 - subnet merging order
- Same approach will be applied to satisfy subnet and interface distributions
- Node centric approach

Questions ?

