Primitives for Active Internet Topology Mapping: Toward High-Frequency Characterization

Robert Beverly, Arthur Berger*, Geoffrey Xie

Naval Postgraduate School *MIT/Akamai

February 9, 2011

CAIDA Workshop on Active Internet Measurements

Long-standing question: What is the topology of the Internet?

Difficult to answer – Internet is:

- A large, complex distributed system (organism)
- Non-stationary (in time)
- Difficult to observe, multi-party (information hiding)
- Poorly instrumented (not part of original design)

 \Rightarrow Poorly understood topology (interface, router, or AS level)

Long-standing question: What is the topology of the Internet?

Difficult to answer – Internet is:

- A large, complex distributed system (organism)
- Non-stationary (in time)
- Difficult to observe, multi-party (information hiding)
- Poorly instrumented (not part of original design)

 \Rightarrow Poorly understood topology (interface, router, or AS level)

What is the topology of the Internet?

Why care?

- Network Robustness: to failure, to attacks, and how to best improve. (antithesis – how to mount attacks)
- Impact on Research: network modeling, routing protocol validation, new architectures, Internet evolution, etc.
- Easy to get wrong (see e.g. "What are our standards for validation of measurement-based networking research?" [KW08])

These challenges and opportunities are well-known. We bring some novel insights to bear on the problem.

Our Work

Our focus:

- Active probing from a fixed set of vantage points
- High-frequency, high-fidelity <u>continuous</u> characterization
- Use <u>external</u> knowledge and adaptive sampling to solve:
 - Which destinations to probe
 - How/where to perform the probe

This Talk:

- Characterize production topology mapping systems
 - Develop/analyze new primitives for active topology discovery

Image: Image:

Archipelago/Skitter/iPlane

Production Topology Measurement

- Ark/Skitter (CAIDA), iPlane (UW)
- Multiple days and significant resources for complete cycle

Ark probing strategy:

- IPv4 space divided into /24's; partitioned across \sim 41 monitors
- From each /24, select a single address at random to probe
- Probe == Scamper [L10]; record router interfaces on forward path
- A "cycle" == probes to all routed /24's

Investigate one vantage point (Jan, 2010):		Ark	iPlane
	Traces	263K	150K
	Probes	4.4M	2.5M
	Prefixes	55K	30K

Path-pair Distance Metric

Q1: How similar are traceroutes to the <u>same</u> destination BGP prefix?

- Use Levenshtein "edit" distance DP algorithm
- Determine the minimum number of edits (insert, delete, substitute) to transform one string into another

• e.g. "robert"
$$\rightarrow$$
 "robber" = 2

• We use:
$$\Sigma = \{0, 1, \dots, 2^{32} - 1\}$$

• Each unsigned 32-bit IP address along traceroute paths $\in \Sigma$

ED=2

129.186.6.251 129.186.254.131 192.245.179.52 4.53.34.13 129.186.6.251 192.245.179.52 4.69.145.12

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Path-pair Distance Metric

Q1: How similar are traceroutes to the <u>same</u> destination BGP prefix?

The Problem

- Use Levenshtein "edit" distance DP algorithm
- Determine the minimum number of edits (insert, delete, substitute) to transform one string into another

• e.g. "robert"
$$\rightarrow$$
 "robber" = 2

• We use:
$$\Sigma = \{0, 1, \dots, 2^{32} - 1\}$$

• Each unsigned 32-bit IP address along traceroute paths $\in \Sigma$

ED=2

129.186.6.251 129.186.254.131 192.245.179.52 4.53.34.13 129.186.6.251 192.245.179.52 4.69.145.12

R. Beverly, A. Berger, G. Xie (NPS)

Image: Image:

The Problem

Measurement Techniques

Path-pair Distance Metric

AIMS-3 7 / 22

(4) (3) (4) (4) (4)

Image: Image:

The Problem

Measurement Techniques

Path-pair Distance Metric

Edit Distance

Q2: How much path variance is due to the last-hop AS?

- Intuitively, number of potential paths exponential in the depth
- More information gain at the end of the traceroute?

Edit Distance

Edit Distance

Adaptive Probing Methodology

Meta-Conclusion: adaptive probing a useful strategy

We develop three primitives:

- Subnet Centric Probing
- Vantage Point Spreading
 - Interface Set Cover

These primitives leverage adaptive sampling, external knowledge (e.g., common subnetting structure, BGP, etc), and data from prior cycles to *maximize efficiency and information gain of each probe*.

Adaptive Probing Methodology

We develop three primitives:

- Subnet Centric Probing
- Vantage Point Spreading
- Interface Set Cover

Best explained by understanding sources of path diversity:

Subnet Centric Probing

Granularity vs. Scaling

- $\bullet \sim 2^{32-1}$ possible destinations (2.9B from Jan 2010 routeviews)
- What granularity? /24's? Prefixes? AS's?

Subnet Centric Probing

From a single vantage point, no path diversity into the AS

• Path diversity due to AS-internal structure

R. Beverly, A. Berger, G. Xie (NPS)

Primitives for Active Topology

Subnet Centric Probing

- Goal: adapt granularity, discover internal structure
- Leverage BGP as coarse structure
- Follow *least common prefix:* iteratively pick destinations within prefix that are maximally distant (in subnetting sense)
- Address "distance" is misleading: e.g. 18.255.255.100 vs. 19.0.0.4 vs. 18.0.0.5
- Stopping criterion: $ED(t_i, t_{i+1}) \leq \tau; \tau = 3$

Subnet Centric Probing

Subnet Centric Probing

Vantage Point Spreading

Vantage Point Spreading

- Discover AS ingress points and paths to the AS via multiple vantage points
- Random assignment of destinations to vantage points is wasteful
- E.g. empirically, the 16 /24's in a /20 prefix are hit on average by 12 unique VPs

Image: Image:

- + ∃ →

Vantage Point Spreading

Vantage Point Spreading

- Using BGP knowledge, maximize the number of distinct VPs per-prefix
- Note, this is complimentary to SCP

Image: A matrix

Vantage Point Spreading

Interface Set Cover

Interface Set Cover

- As shown in preceding analysis, full traces very inefficient
- Perform greedy minimum set cover approximation (NP-complete)
- Select subset of prior round probe packets for current round

Image: A matrix

Interface Set Cover

Interface Set Cover

- Generalizes DoubleTree [DRFC05] without parametrization
- Efficient
- Inherently multi-round
- Additional probing for validation mis-matches (e.g. load balancing, new paths)

Interface Set Cover

20K random IP destinations each day over a two-week period, fraction of missing interface using ISC

Uses \leq 20% of the full probing load (\sim 30% of full trace set cover)

Summary

Take-Aways:

- Deconstructed Ark/iPlane topology tracing as case study
- Developed primitives for faster, more efficient probing:
 - Subnet Centric Probing, Interface Set Cover, Vantage Point Spreading
 - Significant load savings without sacrificing fidelity

Future

- Combining our primitives on production system
- Refine ISC "change-driven" logic
- Build a better Internet scope to detect small-scale dynamics

Thanks!				
	Questions?			
		< □ > < @ > < ≥	→ < 2 → 2	৩৫৫
R. Beverly, A. Berger, G. Xie (NPS)	Primitives for Active Topology		AIMS-3	22 / 22