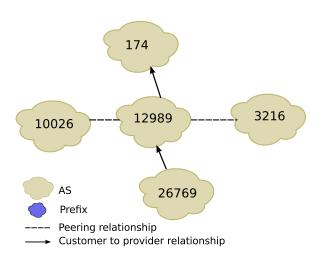
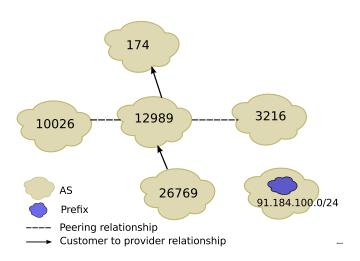
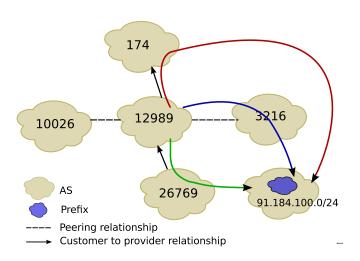
On multi-exit routings and AS relationships

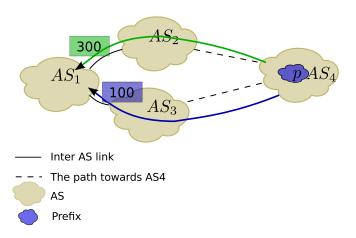
Riad Mazloum, Marc-Olivier Buob¹, Jordan Augé¹, Bruno Baynat¹, Timur Friedman¹ and Dario Rossi²

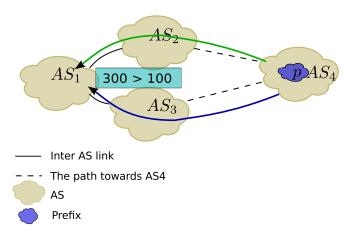
¹UPMC, France first.last@lip6.fr ²Telecom ParisTech, France dario.rossi@enst.fr

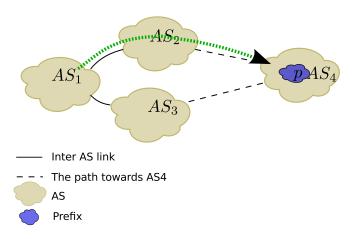

February 06th, 2013 -ISMA 2013 AIMS 5

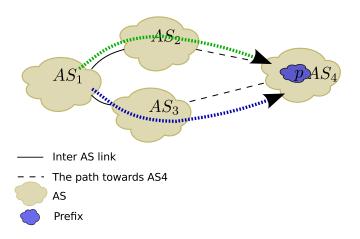


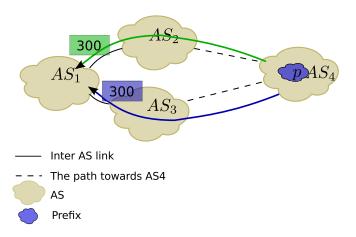

Internet routing example


Internet routing example

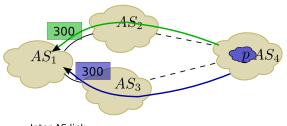

Surprising observations


BGP route with higher LP


A route has a higher LP


Single next-hop AS

Multi next-hop ASes


Equal LP for all next-hop ASes

Observed ME \implies equal LP for next-hop ASes

Observed ME \implies equal LP (ME)

$$ME(AS_1, p) = \{AS_2, AS_3\} \implies LP_{AS_1}(AS_2) = LP_{AS_1}(AS_3)$$

Inter AS link

The path towards AS4

AS

Implementation of AS economical policies

Observed ME \implies equal LP (ME)

$$ME(AS_1, p) = \{AS_2, AS_3\} \implies LP_{AS_1}(AS_2) = LP_{AS_1}(AS_3)$$

Implementation of AS economical policies (POLICY)

client > peer > provider

Implementation of AS economical policies

Observed ME \implies equal LP (ME)

$$ME(AS_1, p) = \{AS_2, AS_3\} \implies LP_{AS_1}(AS_2) = LP_{AS_1}(AS_3)$$

Implementation of AS economical policies (POLICY)

$$client > peer > provider \implies LP(client) > LP(peer) > LP(provider)$$

(ME) + (POLICY)

Observed ME \implies equal LP (ME)

$$ME(AS_1, p) = \{AS_2, AS_3\} \implies LP_{AS_1}(AS_2) = LP_{AS_1}(AS_3)$$

Implementation of AS economical policies (POLICY)

$$client > peer > provider \implies LP(client) > LP(peer) > LP(provider)$$

(ME) + (POLICY)

 $ME(AS_1, p) = \{AS_2, AS_3\} \implies$ same type of relationship between AS_1 and AS_2, AS_3

Does it work?

(ME) + (POLICY)

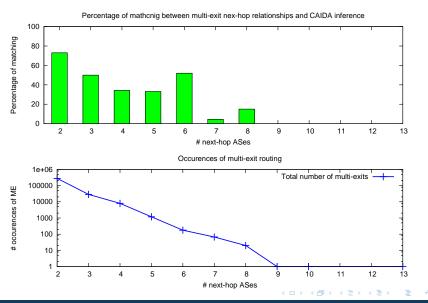
 $ME(AS_1, p) = \{AS_2, AS_3\} \implies$ same type of relationship between AS_1 and AS_2, AS_3

Does it work?

(ME) + (POLICY)

 $ME(AS_1, p) = \{AS_2, AS_3\} \implies$ same type of relationship between AS_1 and AS_2, AS_3

- Get types of relations of cases such between AS_1 and AS_2 , AS_3 from CAIDA's inference dataset
- Check whether all of the next-hop ASes have the same relationship


Does it work?

(ME) + (POLICY)

 $ME(AS_1, p) = \{AS_2, AS_3\} \implies$ same type of relationship between AS_1 and AS_2, AS_3

- Get types of relations of cases such between AS_1 and AS_2 , AS_3 from CAIDA's inference dataset
- Check whether all of the next-hop ASes have the same relationship
- About 70% matching 30% mismatching

Multi-exit occurrences and relationship matching

Data

Multi-exit discovery:

• BGP: BGPmon, Colorado State University project¹

¹http://bgpmon.netsec.colostate.edu/

²http://www.top-hat.info/

³http://www.team-cymru.org/Services/ip-to-asn.html

⁴http://www.caida.org/data/active/as-relationships/

Data

Multi-exit discovery:

- BGP: BGPmon, Colorado State University project¹
- traceroute: TDMI/TopHat, UPMC project²
 - IP/AS aliasing: Team Cymru IP to AS mapping service³

¹http://bgpmon.netsec.colostate.edu/

²http://www.top-hat.info/

³http://www.team-cymru.org/Services/ip-to-asn.html

Data

Multi-exit discovery:

- BGP: BGPmon, Colorado State University project¹
- traceroute: TDMI/TopHat, UPMC project²
 - IP/AS aliasing: Team Cymru IP to AS mapping service³

AS relationships:

• CAIDA AS relationship inference database⁴

Our data is available on request.

¹http://bgpmon.netsec.colostate.edu/

²http://www.top-hat.info/

³http://www.team-cymru.org/Services/ip-to-asn.html

Discussion

Observed ME \implies equal LP (ME)

$$ME(AS_1, p) = \{AS_2, AS_3\} \implies LP_{AS_1}(AS_2) = LP_{AS_1}(AS_3)$$

Implementation of AS economical policies (POLICY)

$$client > peer > provider \implies LP(client) > LP(peer) > LP(provider)$$

- Get types of relations of cases such between AS_1 and AS_2 , AS_3 from CAIDA's inference dataset
- Check whether all of the next-hop ASes have the same relationship

Discussion

Observed ME \implies equal LP (ME)

$$ME(AS_1, p) = \{AS_2, AS_3\} \implies LP_{AS_1}(AS_2) = LP_{AS_1}(AS_3)$$

Implementation of AS economical policies (POLICY)

$$client > peer > provider \implies LP(client) > LP(peer) > LP(provider)$$

- Get types of relations of cases such between AS_1 and AS_2 , AS_3 from CAIDA's inference dataset
- Check whether all of the next-hop ASes have the same relationship

Discussion

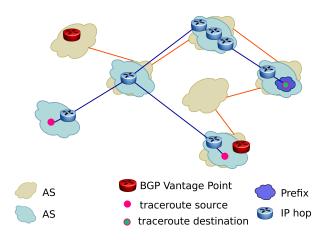
Observed ME \implies equal LP (ME)

$$ME(AS_1, p) = \{AS_2, AS_3\} \implies LP_{AS_1}(AS_2) = LP_{AS_1}(AS_3)$$

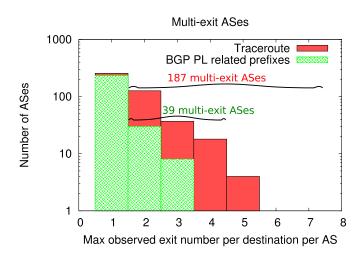
Implementation of AS economical policies (POLICY)

$$client > peer > provider \implies LP(client) > LP(peer) > LP(provider)$$

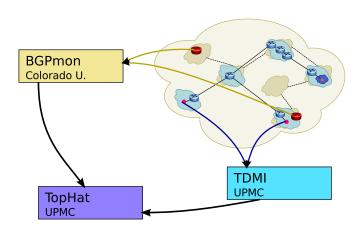
- Get types of relations of cases such between AS_1 and AS_2 , AS_3 from CAIDA's inference dataset
- Check whether all of the next-hop ASes have the same relationship



Have another ideas?

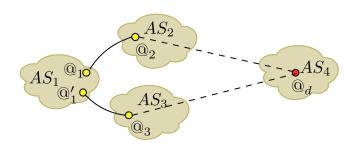

- Feedback about the problem and the analysis process
- Get confirmation about the results (we don't have a ground truth of AS relationships)
- Possible collaborations

Reserved slides...


BGP and IP overlap

Multi-exit routing, BGP and IP results

TopHat interconnection



Set of AS paths per prefix $p_1, AS_1 - AS_2 - ... - AS_5$ $p_2, AS_1 - AS_2 - ... - AS_5$ $p_1, AS_1 - AS_3 - ... - AS_5$ Set of AS triplets CAIDA inference DB p_2, AS_1, AS_2 $AS_1, AS_3, peer$ p_1, AS_1, AS_3 $AS_1, AS_2, peer$ p_1, AS_1, AS_2 Set of multi-exits $(p_1, AS_1, \{peer, peer\})$ $p_1, AS_1, \{AS_2, AS_3\}$

Set of AS paths per prefix $p_1, AS_1 - AS_2 - ... - AS_5$ $p_2, AS_1 - AS_2 - ... - AS_5$ $p_1, AS_1 - AS_3 - ... - AS_5$ Set of AS triplets CAIDA inference DB p_2, AS_1, AS_2 $AS_1, AS_3, peer$ p_1, AS_1, AS_3 $AS_1, AS_2, client$ p_1, AS_1, AS_2 Set of multi-exits $(p_1, AS_1, \{client, peer\})$ $p_1, AS_1, \{AS_2, AS_3\}$

- --- Inter AS link
- - Continuation of the link to the announcing AS
- An Autonomous System (AS)
- igorup The destination prefix <math>p

- Inter AS link
- - Continuation of the link to the announcing AS
- An Autonomous System (AS)
 - \bigcirc IP Hop $@_i$
 - lacktriangle The destination IP address $@_d$