
Project Matryoshka: NDN Multiplayer Online Game
Zhehao Wang1, Zening Qu2, Jeff Burke3

123UCLA REMAP

Introduction

Matryoshka is a peer-to-peer multiplayer online game (MOG) running on NDN.
In this project, we identify the MOG synchronization problem. Then we propose
an octree partition of the game world, and a two-step synchronization design.

I Background

Peer-to-peer structures were explored for commercial online games. However,
maintaining security and availability while scaling users has driven most
multiplayer online games towards a client-server or client-superpeer architecture.
Client-server multiplayer games face certain problems:
1. a small number of points of failure;
2. traffic centralizing at several servers.
To tackle these problems, we present Matryoshka, whose design is based on
Sync: by exchanging data digest each party learns about the missing data, and
then can retrieve data via built-in multicast delivery.
The demo demonstrate Matryoshka’s gameplay.

I Gameplay

. Play as a matryoshka

. Explore unknown universe

. Discover other players

. Get player position
updates

. Interact with environment Figure 1: Game play

Problem Analysis

The challenge of the MOG we are addressing: peer-to-peer synchronization in a
distributed virtual environment.

I Synchronization
Players whose areas of
interest intersect with each
other should reach
consistent conclusions about
things in the intersected
area.

I Locality
A player only needs to know
the updates of objects
within its Area of Interest
(AoI) in the virtual game
world.

Figure 2: Two worlds in the MOG

Figure 2 illustrates the problem.
Each physical peer hosts a player, which has an AoI. Take peer 2 as example.
I It hosts player3.
I It should discover player1, player2, NPC2 and NPC3.
I Its knowledge of player1 and 2’s locations should be updated when they

move.
I The AoI should move as player3 moves.

Virtual World Partitioning

Figure 3 illustrates the octree partition of the virtual environment.
The whole world is represented by a top-level cube.

I Octree partitions the virtual
environment into octants statically
and recursively.

I With octree, we hope to provide a
shared namespace for every peer
running the game.

I All the peers that care about the
same region can share the data
brought by synchronization
interests towards the same nodes.

Figure 3: Octree partitioning

Contact Information

I Email: wangzhehao410305@gmail.com

Design Overview

Two-step design:
I Discovery: which players are in a peer’s vicinity.

Peers with overlapping AoIs synchronize ”discovery namespaces” for octants
of mutual interest to find other objects in the game world:
. They periodically express Interests in the discovery namespace containing

the octant indices they are interested in to all peers, along with a digest
of the object names they know in each octant.

. Each peer responds with their knowledge of objects in the octants.

The namespace for discovery is given in Figure 4.
. Game name component separates the game into several sub-worlds.
. Octant indices indicate the octants absolute location in the game world.
. Digest component contains the hash of the set of object name strings in

that octant.

Every peer should have the same hash for octants belonging to their
intersection when steady state is reached.

Figure 4: Discovery namespace Figure 5: Update namespace

I Update: what are those players doing.
. Peers express position update interests using the object names returned

in step one.
. Peers respond with current location, with version appended. Digest in

step one is modified based on this response.

Figure 5 illustrates the update namespace.
. Process name represents a game instance, which hosts the player avatar.
. Position and action components fetch the latest data.

Sample pattern of communication for a game instance (a) to discovery another
instance (d) is given in Figure 6.

Figure 6: Example names

Demo Implementation

The demo application was built using Unity3D game engine, and ndn-dot-net, a
C# adaptation of NDN CCL. The demo shows the game code running on a
small number of peers, and a visualization of the AoI.
Player characters and NPCs are instantiated by each peer, and each peer can
navigate around the common world using their player character. Player and NPC
discovery, and player position update (at the rate of 4 Hz) is demonstrated.

Future Work

Future work includes further evaluation of the design, and addressing problems
caused by hierarchical octree partitioning.
I Difficult to represent AoIs that are close to the border between two

sub-regions of the highest subdivision hierarchy.
I Difficult to represent spherical AoI.
I Need routing to keep up with the changes in AoI represented by octree.

References

[1] Zening Qu and Jeff Burke. Egal car: A peer-to-peer car racing game synchronized over named
data networking. Technical Report NDN-0010, October 2012.

[2] Zhenkai Zhu, Chaoyi Bian, Alexander Afanasyev, Van Jacobson, and Lixia Zhang. Chronos:
Serverless multi-user chat over ndn. Technical Report NDN-0008, NDN, October 2012.

NDNComm, Sept 4th, 2014 wangzhehao410305@gmail.com

mailto:wangzhehao410305@gmail.com

