## Navigating with Power Laws

Aaron Clauset CAIDA / SFI Networks and Navigability Working Group 8 August 2008

# Milgram Study (1967)

#### A question of social connectedness

- 60 letters sent to Wichita, Kansas
- Destination: wife of divinity stud., Cambridge, Ma.
- Only 3 arrived
- Subsequent studies: mean path length ~6

#### Discoveries

- Surprisingly short paths; "small world" phenom.
- Shorts paths are locally discoverable

# Watts-Strogatz Model (1998)



- Modeled existence of short paths only
- diameter  $\log(n)$

D.J. Watts and S.H. Strogatz, "Collective dynamics of small-world networks." Nature 393 (1998) 440-442.

## Kleinberg Model (2000)



- Model of navigability/search
- Lattice + long range links
- (Manhattan) distance metric d(u, v) = |u v|
- Local (greedy) navigation in ~  $\log^2(n)$  steps

J. Kleinberg. "The small-world phenomenon: an algorithmic perspective." *Proc. 32nd ACM Symposium on Theory of Computing* (2000) 163--170.

### An Aside: Finite Size Effects

- Simulate Kleinberg graphs with various  $\alpha \sim d$
- Measure mean routing time T
- Find severe finite size effects  $\alpha_{T_{opt}} \neq d$

e.g., for d = 1

$$\alpha_{T_{opt}}(n) = 1 - \frac{A}{\log^2(n)}$$

• Keep this in mind for later

### Simulation Results

Contact and and start of the second start of t



## Convergence



### Not a new result



# Origins of Navigability

#### Observation

- Real networks often locally navigable e.g., social network, world wide web Idea
- Distributed changes to topology
- Greedy changes to improve local navigability
  - web surfers on network of home pages
  - links changed based on speed of surfing

## Clauset/Moore Model (2003)



- Same network as Kleinberg
- Dynamic, greedy rewiring process
- Global attractor for link-length distribution  $P(\ell) \to \ell^{-\alpha_{\text{rewired}}} \qquad \alpha_{\text{rewired}} \sim d$

• Gives routing time  $T \sim [\log(n)]^2$ 

# Dynamics

- 1. choose random pair (x, y) (for d = 1)
- 2. choose random tolerance  $T_t$  on [1, d(x, y)]
- 3. if routing time  $T_r \geq T_t$ , become frustrated
- 4. if frustrated, change random long-range link to have length  $T_t$

### Simulation Results

States of play by the

#### **Initial Conditions**

All self-loops, i.e.,  $P(\ell) \sim \ell^{-\infty}$ 

#### **Stop Criteria**

When link-length distribution stabilizes

### **Rewired Link-Lengths**



# **Routing Times**

• Measure mean routing times after stabilization

- Fast routing times  $T \sim [\log(n)]^{\alpha_{T_{opt}}}$
- Recall that  $\alpha_{T_{opt}} \sim d$  (finite size effects)

# **Routing Times**



## How long until navigable?

• Let rewiring time  $\tau(n)$  be rewiring trials until  $T_{\text{rewired}} \leq 1.01 \cdot T_{opt}$ 

•  $\tau(n)$  grows as a low-order polynomial  $\tau(n) \sim n^{1.77}$ 

## Time to Navigability



## Global Attractor

#### **Initial Condition**

- Link-length distribution  $P(\ell) \sim \ell^{-\alpha_0}$
- Measure  $\alpha_{\text{rewired}}$  as function of  $\alpha_0$
- *Rewired distribution (eventually) independent of initial condition*

### Independence



# Analytics

• Distribution of tolerances  $T_t$ 

$$P(T_t) = \frac{\log n - \log T_t}{n - 1 - \log n}$$

- Otherwise, we don't know much
- If  $\alpha = d$ , then E[new length] = E[old length]
- What is  $P(\text{frustrated} \mid d(u, v))$  ?

# Thoughts

- Navigability can come from distributed behavior
- Natural/intuitive mechanism
- Process is adaptive to changes in size, etc.
- Analytics hard (full-history problems)
- Power laws emerge spontaneously why?

- How does destination popularity effect rewired topol.
- Preprint at cond-mat/0309415

