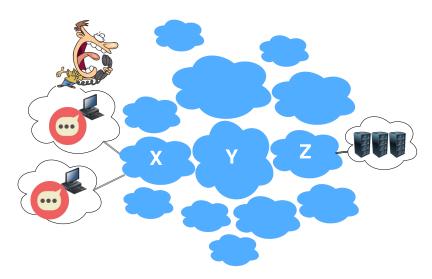
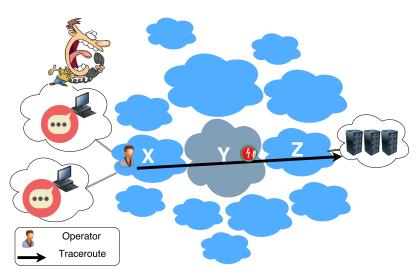

Pinpointing Delay and Forwarding Anomalies Using Large-Scale Traceroute Measurements


Romain Fontugne¹, Emile Aben², Cristel Pelsser³, Randy Bush¹ November 1, 2017

¹IIJ Research Lab, ²RIPE NCC, ³University of Strasbourg / CNRS

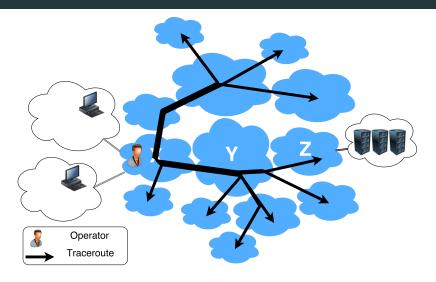

Understanding Internet health?

Understanding Internet health?

Understanding Internet health?

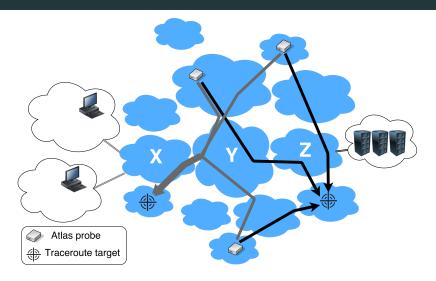
Understanding Internet health? (Problems)

Manual observations


- Traceroute / Ping / Operators' group mailing lists
- Slow process
- Small visibility

Understanding Internet health? (Problems)

Manual observations


- Traceroute / Ping / Operators' group mailing lists
- Slow process
- Small visibility
- ightarrow Our goal: Systematically pinpoint network disruptions
 - Delay changes
 - Forwarding anomalies (not covered here, see the paper)

Silly solution: frequent traceroutes to the whole Internet!

- \rightarrow Doesn't scale
- \rightarrow Overload the network

Better solution: mine results from deployed platforms

- \rightarrow Cooperative and distributed approach
- \rightarrow Using existing data, no added burden to the network

RIPE Atlas

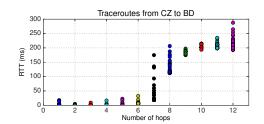
Actively measures Internet connectivity

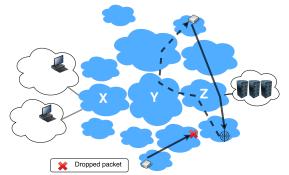
- Multiple types of measurement: ping, traceroute, DNS, SSL, NTP and HTTP
- 10 000 active probes!
- Data for numerous measurements is made publicly available

RIPE Atlas: traceroutes

Two repetitive large-scale measurements

- Builtin: traceroute every 30 minutes to all DNS root servers (≈ 500 server instances)
- Anchoring: traceroute every 15 minutes to 189 collaborative servers

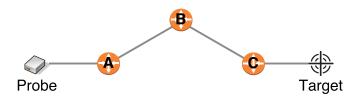

Analyzed dataset


- May to December 2015
- 2.8 billion IPv4 traceroutes
- 1.2 billion IPv6 traceroutes

Monitor delays with traceroute?

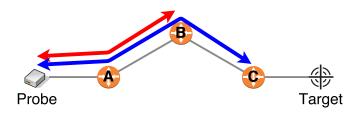
Challenges:

- Noisy data
- Traffic asymmetry
- Packet loss

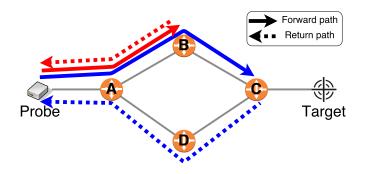


Monitor delays with traceroute?

Traceroute to "www.target.com"

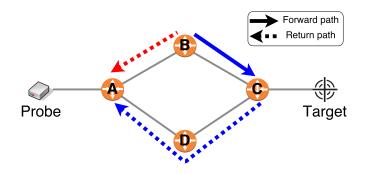

```
~$ traceroute www.target.com
traceroute to target, 30 hops max, 60 byte packets
1 A 0.775 ms 0.779 ms 0.874 ms
2 B 0.351 ms 0.365 ms 0.364 ms
3 C 2.833 ms 3.201 ms 3.546 ms
4 Target 3.447 ms 3.863 ms 3.872 ms
```


Round Trip Time (RTT) between B and C? Report abnormal RTT between B and C?


What is the RTT between B and C?

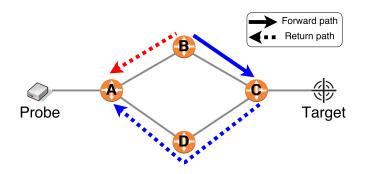
```
~$ traceroute www.target.com
traceroute to target, 30 hops max, 60 byte packets
1 A 0.775 ms 0.779 ms 0.874 ms
2 B 0.351 ms 0.365 ms 0.364 ms
3 C 2.833 ms 3.201 ms 3.546 ms
4 Target 3.447 ms 3.863 ms 3.872 ms
```


Differential RTT:
$$\Delta_{CB} = RTT_C - RTT_B \stackrel{?}{=} RTT_{CB}$$


What is the RTT between B and C?

$$RTT_C - RTT_B = RTT_{CB}$$
?

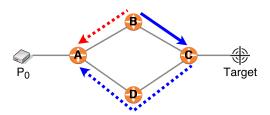
- No!
- Traffic is asymmetric
- RTT_B and RTT_C take **different return paths!**


What is the RTT between B and C?

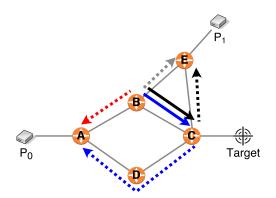
$$RTT_C - RTT_B = RTT_{CB}$$
?

- No!
- Traffic is asymmetric
- RTT_B and RTT_C take different return paths!
- **Differential RTT**: $\Delta_{CB} = RTT_C RTT_B = d_{BC} + e_p$

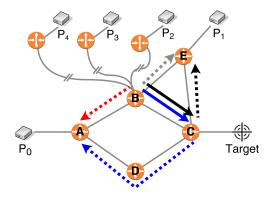
Problem with differential RTT

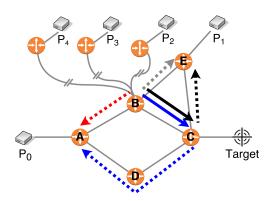


Monitoring Δ_{CB} over time:



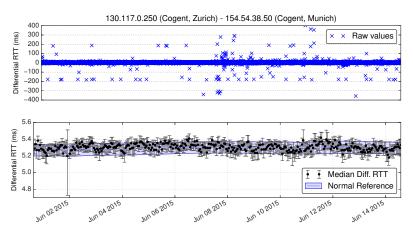
→ Delay change on BC? CD? DA? BA???


Differential RTT: $\Delta_{CB} = x_0$


Differential RTT: $\Delta_{CB} = \{x_0, x_1\}$

Differential RTT: $\Delta_{CB} = \{x_0, x_1, x_2, x_3, x_4\}$

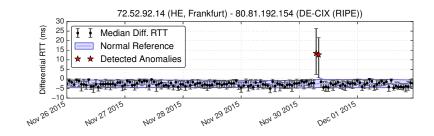
Differential RTT: $\Delta_{CB} = \{x_0, x_1, x_2, x_3, x_4\}$



Median Δ_{CB} :

- Stable if a few return paths delay change
- Fluctuate if delay on BC changes

Median Diff. RTT: Example


Tier1 link, 2 weeks of data, 95 probes:

- Stable despite noisy RTTs
- Normally distributed

- Conf. interval: Wilson score
- Normal ref.: exp. smooth.

Detecting Delay Changes

Significant RTT changes:

Confidence interval not overlapping with the normal reference

Results

Analyzed dataset

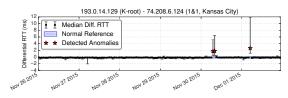
- Atlas builtin/anchoring measurements
- From May to Dec. 2015
- Observed 262k IPv4 and 42k IPv6 links

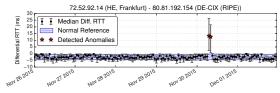
We found a lot of delay changes! Let's see only two prominent examples

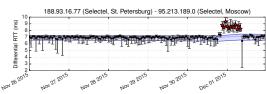
Case study: DDoS on DNS root servers

Two attacks:

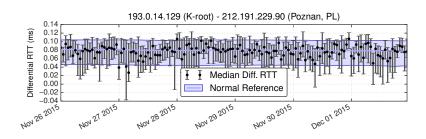
• Nov. 30th 2015


• Dec. 1st 2015

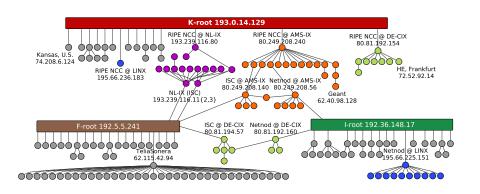

Almost all server are anycast


- Congestion at the 531 sites?
- Found 129
 instances altered
 by the attacks

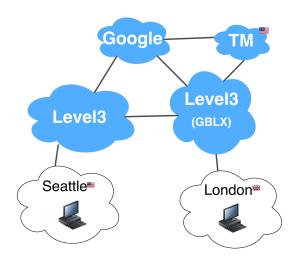
Observed delay changes

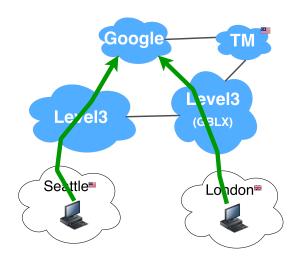


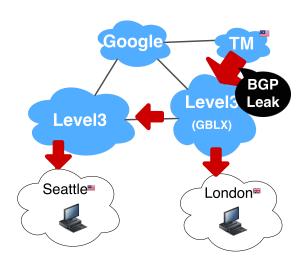
- Certain servers are affected only by one attack
- Continuous attack in Russia

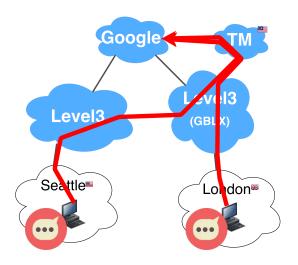

Unaffected root servers

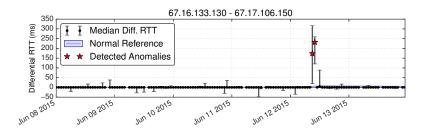
Very stable delay during the attacks


- Thanks to anycast!
- Far from the attackers


Congested links for servers F, I, and K

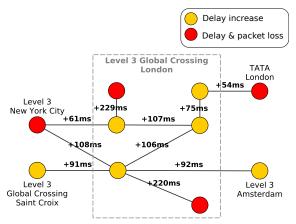



→ Concentration of malicious traffic at IXPs



Not only with Google... but about 170k prefixes!

Congestion in Level3


Rerouted traffic has congested Level3 (120 reported links)

• Example: 229ms increase between two routers in London!

Congestion in Level3

Reported links in London:

→ Traffic staying within UK/Europe may also be altered

Summary

Detect and locate delay and forwarding anomalies in billions of traceroutes

- Non-parametric and robust statistics
- Diverse root causes: remote attacks, routing anomalies, etc...
- Give a lot of new insights on reported events

Online detection for network operators

• http://ihr.iijlab.net/

