The Public Option: A non-regulatory alternative to Network Neutrality

Richard Ma

School of Computing National University of Singapore

Joint work with Vishal Misra (Columbia University)

The 2nd Workshop on Internet Economics

Highlights

- A more realistic equilibrium model of content traffic, based on
 - User demand for content
 - System protocol/mechanism
- Game theoretic analysis on user utility under different ISP market structures:
 Monopoly, Duopoly & Oligopoly
- Regulatory implications for all scenarios and the notion of a *Public Option*

Three-party model (M, μ, \mathcal{N})

- \square μ : capacity of a single access ISP
- □ M: # of users of the ISP (# of active users)
- $\square \mathcal{N}$: set of all content providers (CPs)
- **¬** λ_i : throughput rate of CP $i \in \mathcal{N}$

User-side: 3 Demand Factors

 \square Unconstrained throughput $\widehat{\theta_i}$

- Upper-bound, achieved under unlimited capacity
 E.g. 5Mbps for Netflix
- Popularity of the content α_i
 Google has a larger user base than other CPs.
- Demand function of the content d_i(θ_i)
 Percentage of users still being active under the achievable throughput θ_i ≤ θ_i

Demand Function $d_i(\theta_i)$

System Side: Rate Allocation

Axiom 1 (Throughput upper-bound)
\$\theta_i \le \hfta_i\$
Axiom 2 (Work-conserving)
\$\lambda_{\mathcal{N}} = \sum_{i \in \mathcal{N}} \lambda_i = \min\left(\mu, \sum_{i \in \mathcal{N}} \hfta_i\right)\$

Axiom 3 (Monotonicity)

 $\theta_{i}(M, \mu_{2}, \mathcal{N}) \geq \theta_{i}(M, \mu_{1}, \mathcal{N}) \ \forall \ \mu_{2} \geq \mu_{1}$

Uniqueness of Rate Equilibrium

□ Theorem (Uniqueness): A system (M, μ, N) has a unique equilibrium $\{\theta_i : i \in N\}$ (and therefore $\{\lambda_i : i \in N\}$) under Assumption 1 and Axiom 1, 2 and 3.

> User demand: $\{\theta_i\} \rightarrow \{d_i\}$ Rate allocation: $\mu, \{d_i\} \rightarrow \{\theta_i\}$

→ Rate equalibrium: $(\{\theta_i^*\}, \{d_i^*\})$

Monopolistic Analysis

 \square Players: monopoly ISP I and the set of CPs $\mathcal N$

□ A Two-stage Game Model (M, μ, \mathcal{N}, I)

- 1^{s†} stage, ISP chooses $s_I = (\kappa, c)$ announces s_I .
- 2nd stage, CPs simultaneously choose service classes reach a joint decision $s_{\mathcal{N}} = (\mathcal{O}, \mathcal{P})$.
- □ Outcome: set \mathcal{P} of CPs shares capacity $\kappa\mu$ and set \mathcal{O} of CPs share capacity $(1 - \kappa)\mu$.

Utilities (Surplus)

ISP Surplus: $IS = c \sum_{i \in \mathcal{P}} \lambda_i = c \lambda_{\mathcal{P}};$

Consumer Surplus: $CS = \sum_{i \in \mathcal{N}} \phi_i \lambda_i$ ϕ_i : per unit traffic value to the users

□ Content Provider: • v_i : per unit traffic profit of CP *i* • $v_i \lambda_i$ if $i \in O$

$$u_i(\lambda_i) = \begin{cases} v_i \lambda_i & \text{if } i \in \mathcal{O}, \\ (v_i - c)\lambda_i & \text{if } i \in \mathcal{P}. \end{cases}$$

Monopolistic Analysis

 \square Players: monopoly ISP I and the set of CPs $\mathcal N$

- □ A Two-stage Game Model (M, μ, \mathcal{N}, I)
 - 1^{s†} stage, ISP chooses $s_I = (\kappa, c)$ announces s_I .
 - 2nd stage, CPs simultaneously choose service classes reach a joint decision $s_{\mathcal{N}} = (\mathcal{O}, \mathcal{P})$.
- * Theorem: Given a fixed charge c, strategy $s_I = (\kappa, c)$ is dominated by $s'_I = (1, c)$.
- The monopoly ISP has incentive to allocate all capacity for the premium service class.

Utility Comparison: Φ vs Ψ

Regulatory Implications

Ordinary service can be made "damaged goods", which hurts the user utility.

- Implication: ISP should not be allowed to use non-work-conserving policies (κ cannot be too large).
- Should we allow the ISP to charge an arbitrarily high price c?

High price c is good when

Oligopolistic Analysis

□ A Two-stage Game Model $(M, \mu, \mathcal{N}, \mathcal{I})$

- 1st stage: for each ISP $I \in \mathcal{I}$ chooses $s_I = (\kappa_I, c_I)$ simultanously.
- 2nd stage: at each ISP $I \in \mathcal{I}$, CPs choose service classes with $s_{\mathcal{N}}^{I} = (\mathcal{O}_{I}, \mathcal{P}_{I})$

Difference with monopolistic scenarios:

- \bigcirc Users move among ISPs until the per user surplus Φ_I is the same, which determines the market share of the ISPs
- ISPs try to maximize their market share.

Duopolistic Analysis

Duopolistic Analysis: Results

Theorem: In the duopolistic game, where an ISP J is a Public Option, i.e. $s_J = (0,0)$, if s_I maximizes the non-neutral ISP I's market share, s_I also maximizes user utility.

> Regulatory implication for monopoly cases:

Oligopolistic Analysis: Results

- □ Theorem: Under any strategy profile s_{-I} , if s_I is a best-response to s_{-I} that maximizes market share, then s_I is an ϵ -best-response for the per user utility Φ .
- > The Nash equilibrium of market share is an ϵ -Nash equilibrium of user utility.
- > Oligopolistic scenarios:

