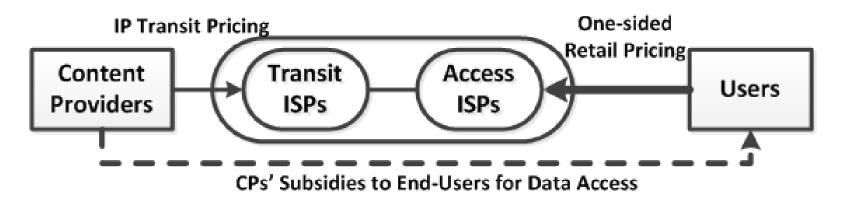

Subsidization Competition: Vitalizing the Neutral Internet

Richard T. B. Ma

School of Computing National University of Singapore

WIE 2014


Internet's two-sided market

Problem is not in the transit market

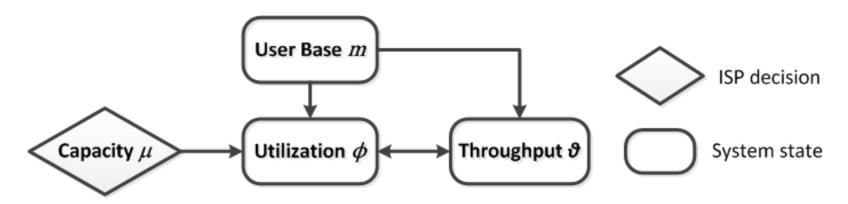
- Fiber optics backbone, rare congestion
- Competitive market with declining prices
- CPs bypass Tier-1 ISPs to improve performance
- But in the mobile access market
 - High mobile infrastructure costs
 - One-side pricing from end-users
 - Lower profit margin than those of the CPs
 - Few incentives for investments

About this work

Propose and study "subsidization competition"

• CPs could voluntarily subsidize its users' usage costs

Differences to sponsored data plan/"zero rate"


- 1. Partial subsidization is allowed
- 2. ISPs charge the same per-unit rate, regardless the source of revenue (no secret deals with CPs)

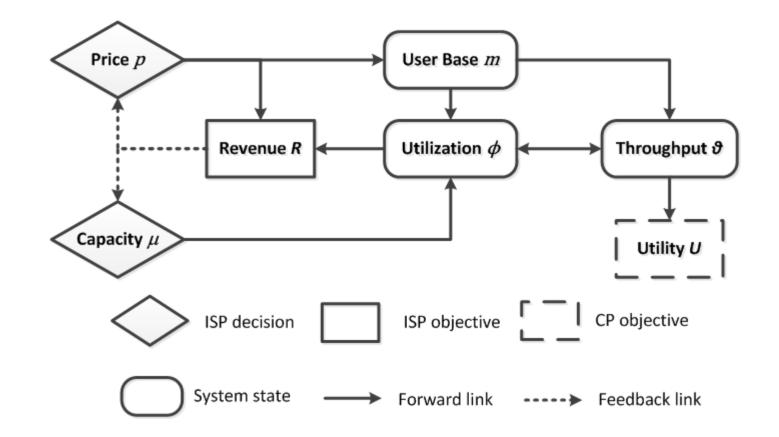
Basic system model (m, μ)

- □ Focus on an access ISP with capacity μ and a set \mathcal{N} of CPs. For each $i \in \mathcal{N}$, denote $\bigcirc m_i$: user size, λ_i : avg per user throughput $\bigcirc \theta_i \triangleq m_i \lambda_i$ as throughput and $\theta \triangleq \sum_{i \in \mathcal{N}} \theta_i$
- Define φ ≜ Φ(θ,μ) as the system utilization
 Φ(θ,μ) ≯ θ; Φ(θ,μ) ↘ μ
 Can be seen as system congestion

□ User throughput satisfies $\lambda_i \triangleq \lambda_i(\phi) \searrow \phi$

Basic system model (m, μ)

 $\Box \phi$ is the utilization of a system (*m*, μ) iff


$$\phi = \Phi\left(\sum_{i \in \mathcal{N}} m_i \lambda_i(\phi), \mu\right)$$

 \Box utilization is unique \rightarrow throughput of CPs

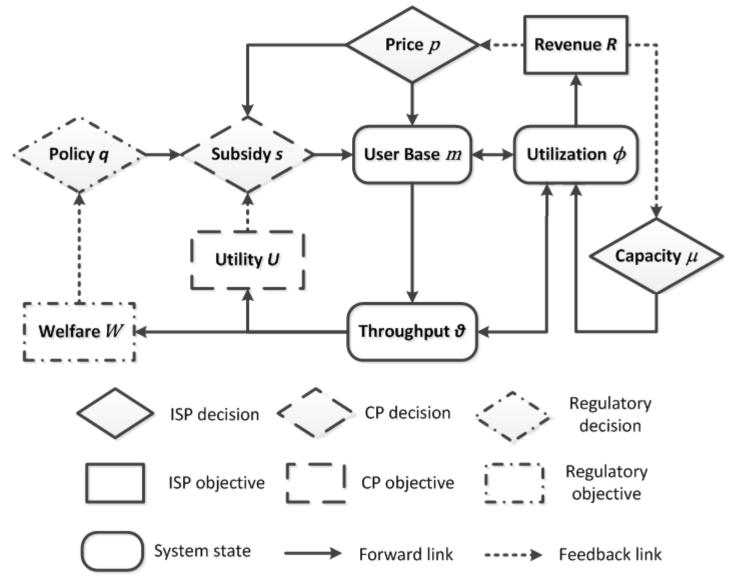
One-sided pricing model

If ISP charges p, its revenue is $R \triangleq p\theta$

□ User size: $m_i \triangleq m_i(p) \searrow p$

One-sided pricing model

Price effect:


$$\frac{\partial \phi}{\partial p} \le 0; \ \frac{\partial \theta}{\partial p} \le 0.$$

- $\Box \ \text{CP } i \text{'s throughput } \theta_i \text{ increases with price } p \text{ iff } \epsilon_p^{m_i} / \epsilon_\phi^{\lambda_i} < -\epsilon_p^{\phi}$
- where $\epsilon_x^y \triangleq \frac{\partial y}{\partial x} \frac{x}{y}$ denotes the x-elasticity of y. $\circ |\epsilon_p^{m_i}|$ small: users are not price sensitive $\circ |\epsilon_{\phi}^{\lambda_i}|$ large: traffic is very sensitive to congestion

Subsidization model

- □ Denote q as a policy that limits the subsidy, each CP i choose to subsidize $s_i \in [0, q]$
- \square Denote s as the strategy profile of the CPs
- □ User size becomes $m_i = m_i(t_i) = m_i(p s_i)$
- **CP's utility becomes** $U_i = (v_i s_i)\theta_i$
- **Define social welfare** $W = \sum_{i \in \mathcal{N}} v_i \theta_i$

Subsidization model

Nash equilibrium

For price p and policy q, a strategy profile s is a Nash equilibrium iff each s_i solves

$$Max U_i(s_i; \mathbf{s}_{-i}) = (v_i - s_i)\theta_i(\mathbf{s})$$

s.t. $0 \le s_i \le q$.

□ There exists a unique Nash equilibrium if for any $s' \neq s$, there always exist CP *i* such that $(s'_i - s_i)(u_i(s') - u_i(s)) < 0$ where $u_i = \partial U_i(s) / \partial s_i$ defines the marginal utility.

Dynamics of equilibrium

□ If a CP *i*'s profitability increases unilaterally from v_i to v'_i , under Nash equilibrium, $s'_i \ge s_i$.

Dynamics of the Nash equilibrium:

$$\frac{\partial s_i}{\partial q} = \begin{cases} 0 & if \ s_i = 0\\ 1 & if \ s_i = q\\ \dots & otherwise \end{cases}$$

$$\frac{\partial s_i}{\partial p} = \begin{cases} 0 & if \ s_i = 0 \ or \ s_i = q \\ \dots & otherwise \end{cases}$$

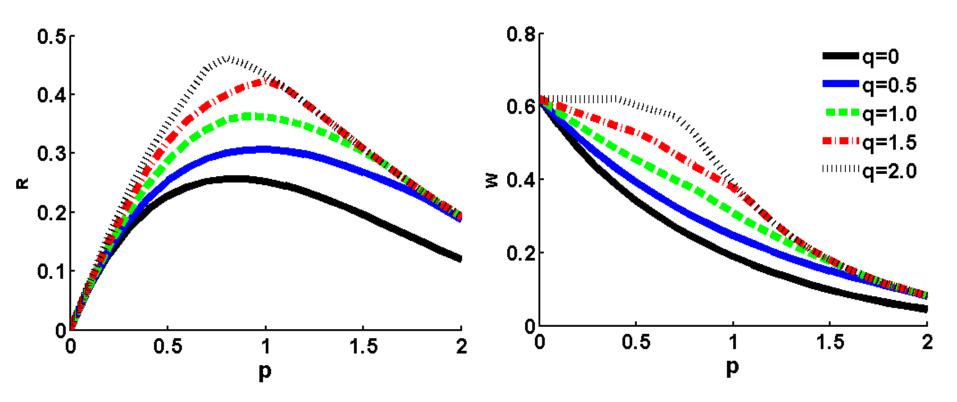
Policy implications

Result: Under fixed price p, if marginal utility matrix is off-diagonally monotone,

$$\frac{\partial \phi}{\partial q} \ge 0, \qquad \frac{\partial R}{\partial q} \ge 0 \text{ and } \frac{\partial s_i}{\partial q} \ge 0 \ \forall i \in \mathcal{N}$$

- Deregulation incentivize CPs to subsidize, increase system utilization and ISP revenue
- Implications: deregulation is desirable for improving investment incentives for ISPs

Policy under ISP's optimal price


□ Consider a 3-stage game:

- 1. Regulator chooses policy q
- 2. ISP chooses optimal price p(q)
- 3. CPs choose subsidies s

Policy effect: \$\frac{dm_i}{dq}\$ = \$\dots\$, \$\frac{d\phi}{dq}\$ = \$\dots\$, \$\frac{d\lambda_i}{dq}\$ = \$\dots\$, \$\dots\$,

• $\left| \epsilon_{t_i}^{m_i} \right|$ small: users are not price sensitive • $\left| \epsilon_{\phi}^{\lambda_i} \right|$ large: traffic is sensitive to congestion • $\left| \epsilon_q^{t_i} \right|$ small: CP is less profitable

Revenue and social welfare

Relaxed policy induces higher R and W
Price regulation might be needed

Conclusions

□ Study subsidization competition among CPs,

- ISP uses the same per-unit charge
- Partial subsidy is allowed

Properties

- the network is physically neutral
- it creates a feedback loop for CPs to compete
- increase access revenue and attract investment

Caveats

- Utilization will increase, some CPs have lower rates
- ISP's price might need to be regulated if the market is not competitive enough

FCC Open Internet Order

Transparency

 must disclose network management practices, performance characteristics, and ...

No blocking

 may not block lawful content, applications, services, non-harmful devices ...

No unreasonable discrimination

 may not unreasonably discriminate in transmitting lawful network traffic ...

How do we want to regulate?

□ It is about "no unreasonable discrimination"

Existing solution

- impose an absolute minimum requirement for ordinary class
- however, ISPs have different capacities ...

Our proposal

- restrict the maximum gap in service quality
- implication: if you make premium class better, you need to make ordinary class better too.

References

Richard T. B. Ma. "Subsidization Competition: Vitalizing the Neutral Internet." ACM CoNEXT Conference 2014

Jing Tang and Richard T. B. Ma. "Regulating Monopolistic ISPs Without Neutrality." IEEE ICNP Conference, 2014.