

"Broadband Technology Roadmap for Rural Areas in the Andes and Amazon Regions in Peru"

PhD Candidate: David Espinoza Research Advisor: David Reed

Interdisciplinary Telecommunications Program University of Colorado at Boulder

Agenda

- 1. Introduction
- 2. Research methodology
- 3. Technical analysis results
- 4. Engineering cost analysis results
- 5. Policy implications & technology roadmap
- 6. Conclusions

1. Introduction

Research Question

Research Question

"What is the technology roadmap for introducing broadband services to underserved and unserved areas in the Andes and Amazon Regions of Peru?"

• Hypothesis 1

Deploying wireless access networks in the Andes and Amazon regions of Peru using the **Wi-Fi technology** and unlicensed spectrum has the **lowest deployment and operating cost** in a **10-year period**.

• Hypothesis 2

Wireless access networks using stratospheric platforms in the Andes and Amazon regions of Peru has the lowest deployment and operating cost for the initial years but are not able to scale for a 10-year period to serve forecasted customer and speed growth.

• Hypothesis 3

Spectrum management and regulation have a quantifiable **technology and economic impact** in the deployment and operation of wireless access networks in the Andes and Amazon regions of Peru and are important to define the **best technology fit** to introduce broadband services in these regions.

2. Research Methodology

Research Methodology

Analyzed Technologies

Technology	Band	Access Network	Max Rate	Eff. DL CH Capacity
LTE	1.7/2.1GHz (AWS)	Terrestrial	75Mbps (2Sx10MHz)	50-54Mbps
WiFi IEEE 802.11n	2.4GHz	Terrestrial	150Mbps (2Sx20MHz)	45-51Mbps
WiMAX IEEE 802.16d/e	3.5GHz	Terrestrial	75Mbps (2Sx10MHz)	45-51Mbps
TVWS IEEE 802.22	470-608MHz 614-698MHz	Terrestrial	16Mbps (1Sx6MHz)	10-11Mbps
LTE	1.7/2.1GHz (AWS)	Stratospheric Balloons	75Mbps (2Sx10MHz)	50-54Mbps

Residential Internet Penetration 2014 Fixed Broadband Demand Penetration 1675 FITEL or universal service agency's design specifications for the Isers access networks: Network service availability (at least 98% per year) 1368 Broadband speed per user (minimum of 2Mbps) sers Type of nodes (district, intermediate and terminal) Energy system equipment (equipment and specs) Civil engineering and node construction and tower specifications 2024 Interconnection with the fiber optic backbone 35.2 -Yauli 4.7 7.4 10.1 12.8 15.5 18.2 20.9 23.6 26.3 29.0

Stratospheric Balloons: Project Loon

Stratospheric Balloons: Project Loon

Estimated cost per balloon system

Computational Subsystem	\$320.00
Solar Energy Subsystem	\$6,972.00
Navigation subsystem	\$8,325.00
Sensing Subsystem	\$119.20
Altitude Control Subsystem	\$493.40
Payload case	\$795.60
Envelope, Gas & Parachute	\$9,100.00
Other Accessories (15%)	\$3,918.00
Telecom Subsystem 2: RF Access Link To Client Devices (approx. 10Mbps)	\$23,076.77
Telecom Subsystem 3: RF Access Link To Backbone (approx. 10Mbps)	\$3,982.38
UAS Assembly & Integration (15%)	\$8,565
Total Cost	\$65,668.60

Flight Configuration: Single Balloon

Flight Configuration: Balloon Constellation

Balloons Flight Patterns

3. Technical Analysis Results

- Year 1 to Year 3
- 2Mbps

- Year 1 to Year 3
- **2Mhns**

Effective Download Channel Capacity =

(Data Rate Users * Actual Throughput)

Eff. Download Channel Capacity * # Channels * Overbooking Capacity per Node = Average Speed per User

Users per Node - Yauli

- Year 4 to Year 7
- 4Mbps

- Year 8 to Year 9
- 8Mbps

- Year 10
- 12Mbps

Fixed BB Demand & LTE Micro-BS Capacity

_	
-	
	-

		Wi-Fi	WiMAX	TVWS	LTE	Balloons
	Nodes and Towers	9	4	2	4	1
Y1	Base Stations/Access Points	12	4	5	4	1
2Mbps	Backhaul Radio Links	8	3	1	3	1
	Customer Premise Equipment	205	205	205	205	205
	Nodes and Towers	9	5	5	5	
Y4	Base Stations/Access Points	12	9	23	7	
4Mbps	Backhaul Radio Links	8	4	4	4	
	Customer Premise Equipment	532	532	532	532	
	Nodes and Towers	11	8	8	12	
Y8	Base Stations/Access Points	26	28	85	23	
8Mbps	Backhaul Radio Links	12	10	9	14	
	Customer Premise Equipment	1064	1064	1064	1064	
	Nodes and Towers	18	12	12	16	
Y10	Base Stations/Access Points	46	50	158	31	
12Mbps	Backhaul Radio Links	23	19	18	23	
	Customer Premise Equipment	1368	1368	1368	1368	

Samugari Area (Amazon Region) LTE Technology

- Year 1 to Year 7
- 2Mbps and 4Mbps

Samugari Area (Amazon Region) LTE Technology

- Year 8 to Year 9
- 8Mbps

Samugari Area (Amazon Region) LTE Technology

- Year 10
- 12Mbps

Fixed BB Demand (Samugari) & LTE Micro-BS Capacity

		Wi-Fi	WiMAX	TVWS	LTE	Balloons
	Nodes and Towers	18	10	9	10	1
Y1	Base Stations/Access Points	18	14	13	11	1
2Mbps	Backhaul Radio Links	17	9	8	9	1
	Customer Premise Equipment	413	413	413	413	413
	Nodes and Towers	18	10	9	10	
Y 4	Base Stations/Access Points	18	15	32	11	
4Mbps	Backhaul Radio Links	18	10	9	10	
	Customer Premise Equipment	803	803	803	803	
	Nodes and Towers	18	12	12	14	
Y 8	Base Stations/Access Points	27	34	111	18	
8Mbps	Backhaul Radio Links	25	19	19	21	
	Customer Premise Equipment	1368	1368	1368	1368	
	Nodes and Towers	22	18	17	22	
Y10	Base Stations/Access Points	46	62	170	27	
12Mbps	Backhaul Radio Links	38	34	33	38	
	Customer Premise Equipment	1675	1675	1675	1675	

4. Engineering Cost Analysis Results

Yauli (Andes Region) - Cumulative CAPEX + OPEX

Samugari (Amazon Region) - Cumulative CAPEX + OPEX

Yauli (Andes Region) & Samugari (Amazon Region) CAPEX+OPEX NPV

31

Yauli (Andes Region) - Samugari (Amazon Region) - CAPEX NPV

Yauli (Andes Region) - Samugari (Amazon Region) - OPEX NPV

Yauli (Andes Region) - Cost per User per Month

→ WiFi	69.7	46.7	37.1	29.5	28.9	23.6	22.5	22.2	21.7	25.7
LTE	54.2	36.8	30.2	28.2	25.4	21.7	20.7	31.8	30.3	33.4
	44.8	33.1	29.1	34.9	32.5	27.7	26.9	32.3	33.4	38.7
WiMAX	53.4	37.2	31.2	29.0	26.9	23.0	22.0	26.8	26.3	32.8
───Balloons-C	45.1	28.0	23.7							
Balloons-S	52.6	33.0	27.4							

Samugari (Amazon Region) - Cost per User per Month

Yauli (Andes Region) - Cost per Mbps per Month

Samugari (Amazon Region) - Cost per Mbps per Month

5. Policy Implications & Broadband Technology Roadmap

Policy Implications – LTE Spectrum

- 1.7/2.1GHz Band (AWS) LTE spectrum cap: 20MHz+20MHz
- Allowing 40MHz+40MHz spectrum per operator:
 - Less expensive than Wi-Fi (NPV reduction 6% in Yauli and 11% In Samugari)
 - Less expensive than LTE (NPV reduction 22% in Yauli and 20% In Samugari)

Overbooking Analysis

- Current regulator recommendation for residential service in rural areas is an overbooking of 10:1.
- Variations in the overbooking in rural areas have significant impact on cost:
 - Overbooking 5:1 (LTE NPV increase 54% in Yauli and 24% In Samugari)
 - Overbooking 20:1 (LTE NPV decrease 25% in Yauli and 29% In Samugari)

Broadband Technology Roadmap

- 1st Step: Use technical and engineering cost analyses results of current wireless technologies and new stratospheric platforms.
 - Stratospheric balloons have lowest cost for first 3 years.
 - WiFi has the lowest cost among current wireless options.
 - LTE 40+40MHz has lower costs than WiFi.
- **2nd Step:** Combine best technical features and cost efficiencies into an innovative roadmap solution.
 - Use stratospheric balloons for first few years.
 - Complementary Wi-Fi or LTE 40MHz terrestrial networks .

Yauli & Samugari - Cumulative CAPEX + OPEX

CAPEX + OPEX (USD)

Broadband Technology Roadmap

The two selected roadmap solutions:

- Stratospheric constellation balloons (LTE 20MHz) complemented with terrestrial LTE 40MHz.
- Stratospheric constellation balloons (LTE 40MHz) complemented with terrestrial LTE 40MHz.

6. Conclusions

• Hypothesis 1

Deploying wireless access networks in the Andes and Amazon regions of Peru using the **Wi-Fi technology** and unlicensed spectrum has the **lowest deployment and operating cost** in a **10-year period**.

- This hypothesis is true
 - Andes Region (Yauli): Lowest NPV (WiMAX, LTE and TVWS are 14%, 21% and 35% more expensive).
 - Amazon Region (Samugari): Lowest NPV (LTE, WiMAX and TVWS are 12%, 14% and 17% more expensive).

• Hypothesis 2

Wireless access networks using stratospheric platforms in the Andes and Amazon regions of Peru has the lowest deployment and operating cost for the initial years but are not able to scale for a 10-year period to serve forecasted customer and speed growth.

- This hypothesis is true
 - Under current spectrum regulations, balloons can provide service for first 3 years at the lowest cost.
 - Allowing LTE 40+40MHz, balloons can provide service for 4 years in Yauli and for 6 years in Samugari.

• Hypothesis 3

Spectrum management and regulation have a quantifiable **technology and economic impact** in the deployment and operation of wireless access networks in the Andes and Amazon regions of Peru and are important to define the **best technology fit** to introduce broadband services in these regions.

This hypothesis is true

- Spectrum regulations have an impact on the available spectrum resources used in the technical analysis.
- Technical design has a direct impact of the network costs.
- Lifting the LTE spectrum cap allows LTE to become the lowest cost option.

Research Question

Research Question

"What is the technology roadmap for introducing broadband services to underserved and unserved areas in the Andes and Amazon Regions of Peru?"

- The two broadband roadmap selected solutions:
 - Stratospheric constellation balloons (LTE 20MHz) complemented with terrestrial LTE 40MHz.
 - Stratospheric constellation balloons (LTE 40MHz) complemented with terrestrial LTE 40MHz.

Acknowledgements

- Dr. David Reed
- Dissertation committee
- Dr. Harvey Gates
- FITEL
- Google and ITP
- My wife Sarah, family and friends

Thank you!

Q & A

Subsidy Analysis

	Cost per user per	Subsidy per user per
	month in Yauli (USD)	month in Huancavelica (USD)
Wi-Fi	\$ 31.6	\$44.3
WiMAX	\$ 36.0	\$ 44.3
TVWS	\$ 42.8	\$ 44.3
LTE	\$ 38.2	\$ 44.3

	Cost per user per	Subsidy per user per
	month in Samugari (USD)	month in Ayacucho (USD)
Wi-Fi	\$ 38.8	27.2
WiMAX	\$ 44.0	27.2
TVWS	\$ 45.2	\$ 27.2
LTE	\$ 43.3	\$ 27.2

Network Radio Links Summary

			YAULI				SAMUGARI			
		WiFi	WiMAX	TVWS	LTE	WiFi	WiMAX	TVWS	LTE	
Average	Year 1	1.3	3.6	4.4	3.5	0.8	2.4	3.4	2.2	
Distance from	Year 4	1.3	1.8	2.3	1.8	0.8	2.4	3.4	2.2	
Towns to Nodes	Year 8	1.0	1.3	1.3	1.1	0.8	1.9	1.7	1.9	
(km)	Year 10	0.7	1.1	1.0	0.9	0.7	1.5	1.4	1.0	
Average	Year 1	3.0	9.0	13.5	9.0	1.6	3.2	4.1	3.2	
Number of	Year 4	3.0	5.4	5.4	5.4	1.6	3.2	4.1	3.2	
Towns per	Year 8	2.5	3.4	3.4	2.2	1.6	2.4	2.2	2.1	
Nodes	Year 10	1.5	2.2	2.2	1.7	1.4	1.5	1.7	1.3	
Average	Year 1	4.0	3.8	3.4	3.8	5.5	6.0	5.7	6.0	
Backhaul	Year 4	4.0	3.9	4.5	3.9	5.5	6.0	5.7	6.0	
Radio Link	Year 8	3.6	3.2	3.9	2.8	5.5	5.6	5.8	4.8	
Distances	Year 10	2.7	2.7	2.8	2.3	4.7	4.7	4.8	4.3	

Yauli County (Andes)

Samugari County (Amazon)

IRIBAMBA

CONTINUENTIAL COS ANDELESIDE COARAHUASA CENTRO CASAGATAT USTA AL EGRET CCATUNEPUCUTO COERCIN CANCHA TOTORA CASTILLA MEMBOHUAYCCO ACCOPUQUIO CANA DATA NEAN UCHCUS MEATO ISCEUSA-CA NEVA EERUSALEN CHACARULA MIRACIORES ATALA CUCARAMA NULA HERMOS NULA HERMOS NULA HERMOS NULA HERMOS PUCARAMA SULLA HERMOS PUCALCASA PUCALCASA PUCALCASA SULLA HERMOS PUCALCASA PUCALCASA SULLA HERMOS PUCALCASA P

- 27 towns and 3,511 households
- Fixed BB demand: 4.7% of households (2.7% annual increase)
- Customers: 205 (Y1) to 1368 (Y10)

- 29 towns and 3,884 households
- Fixed BB demand: 9.1% of households (2.9% annual increase)
- Customers: 413 (Y1) to 1675 (Y10)

Customer Demand - Yauli

	FITEL Towns Gov Customers	Additional Towns Gov Customers	Residential Penetration (%)	FITEL Towns Residential Customers	Additional Towns Residential Customers	Total Demand
Y=1 2015	34	14	4.7%	108	49	205
Y=2 2016	34	14	7.4%	182	76	306
Y=3 2017	34	14	10.1%	266	103	417
Y=4 2018	34	14	12.8%	350	134	532
Y=5 2019	34	14	15.5%	441	168	657
Y=6 2020	34	14	18.2%	536	202	786
Y=7 2021	34	14	20.9%	636	236	920
Y=8 2022	34	14	23.6%	741	275	1064
Y=9 2023	34	14	26.3%	849	312	1209
Y=10 2024	34	14	29%	964	356	1368

Customer Demand - Samugari

	FITEL Towns Gov Customers	Additional Towns Gov Customers	Residential Penetration (%)	FITEL Towns Residential Customers	Additional Towns Residential Customers	Total Demand
Y=1 2015	33	13	9.1%	266	101	413
Y=2 2016	33	13	12%	361	132	539
Y=3 2017	33	13	14.9%	458	166	670
Y=4 2018	33	13	17.8%	559	198	803
Y=5 2019	33	13	20.7%	660	234	940
Y=6 2020	33	13	23.6%	766	270	1082
Y=7 2021	33	13	26.5%	875	304	1225
Y=8 2022	33	13	29.4%	981	341	1368
Y=9 2023	33	13	32.3%	1098	378	1522
Y=10 2024	33	13	35.2%	1211	418	1675