Comparison of 477 and California Broadband Map Data

David Reed, CU Boulder and David Espinoza, CSU Chico

Workshop on Internet Economics December 13, 2018

FCC Aware of Form 477 Deficiencies

- Data not independently verified
- Census block level reporting can overstate availability
 - ISPs serve or *could* serve without "extraordinary commitment of resources"
- Rejected more granular data collection in 2013 due to administrative and data-quality challenges
 - Collect location-level data from USF recipients to assess meeting buildout requirements

FCC Aware of Form 477 Deficiencies (cont'd)

- FNPRM in Aug 2017 (Modernizing the FCC Data Program)
 - Eliminate committed information rate reporting
 - Require ISPs to report for each technology code:
 - areas served by existing customers where number of customers can be increased
 - areas served but no net-additional customers possible
 - areas with no existing customers but new customers can be added upon request
 - Option to file geospatial data (as required for mobile broadband), or sub-census-block level (street address or segments, parcel)

FCC Form 477's Broadband Coverage Maps by Census Block Overreport Service Areas as Reported to the State of Utah

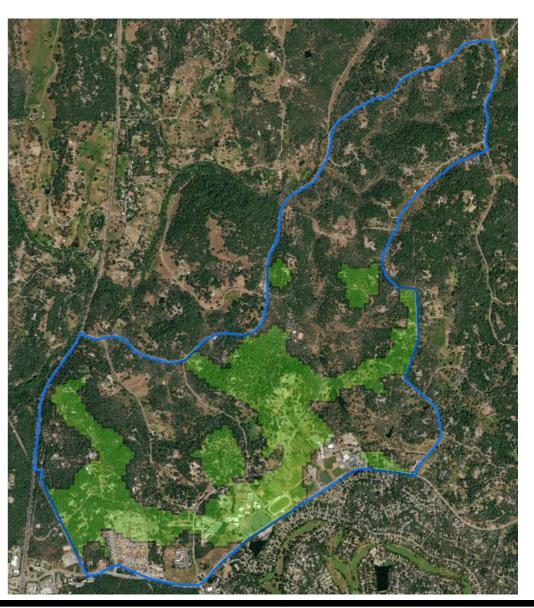
NTIA RFC (May 2018) Submission From Utah

Course Reported to State Course Reported by Rows 477 Address Points Added (5.5%) by Reparated Courses

Approach - Compare FCC and California PUC Data

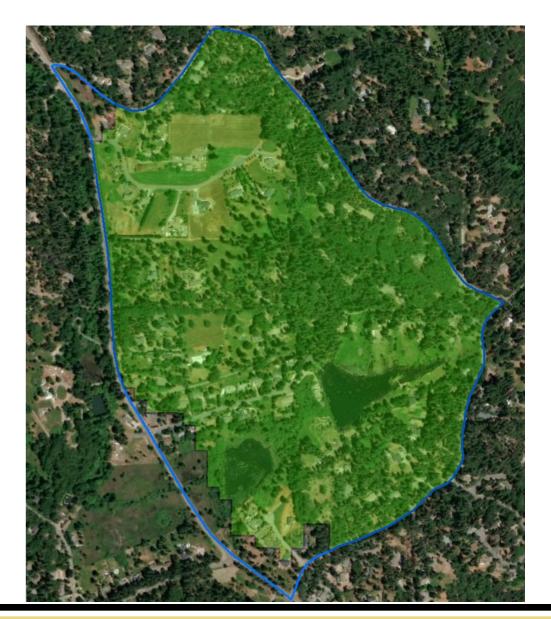
- CPUC gathers same data as FCC plus verification of fixed wireless providers coverage
- Uses EDX and submitted tower, antenna and radio information
- Examine overlap in coverage between fixed wireless providers within census blocks

Fixed Wireless Service (6/1Mbps)


Census Blocks - 1 ISP	189,036
Census Blocks - 2 ISPs	60,892
Census Blocks - 3 ISPs	20,379
Census Blocks - 4 ISPs	2,082
Census Blocks - 5 ISPs	515

272,904

Largest Rural Census Block (2.2 sq mi) with 5 Fixed Wireless ISPs


Total Number of Wireline ISPs	% Cover Census Bl Number of	ock By	Estimated Uncovered (Pop. 356, 142 HH in
0 or 1	1 WISP	100%	0
	2 WISPs	100%	0
	3 WISPs	?%	?
	4 WISPs	?%	?
	5 WISPs	32%	~75 structures

Largest Urban Census Block (0.3 sq mi) with 5 Fixed Wireless ISPs

Total Number of Wireline ISPs	% Cover Census Bl Number of	ock By	Estimated Uncovered (Pop. 185, 79 HH in
	1 WISP	100%	0
	2 WISPs	100%	0
2	3 WISPs	100%	0
	4 WISPs	100%	0
	5 WISPs	93%	~7 structures

Database Comparison

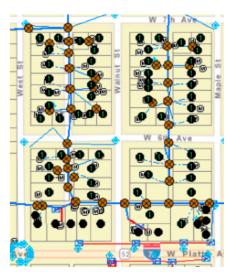
	FCC Wireline	CPUC Wireline	FCC Wireless	CPUC Wireless
Urban	AT&T Altice* Comcast	AT&T Suddenlink* Comcast	_	Cal.net Inc. ColfaxNet DigitalPath, Inc Exwire SmarterBroadband
Rural	AT&T Altice*	-	Cal.net Inc.	Cal.net Inc. ColfaxNet DigitalPath, Inc Exwire SmarterBroadband

*Business Offering Only

Key Policy Questions

- Is competition in rural/urban overestimated by broadband maps?
 - FCC reports average of 5-6 ISPs per census block*
 - No insight on wireline
 - CPUC data may overstate WISPs, particularly rural
 - Tough to give general answer
- Overestimating users meeting broadband thresholds as well?
 - Microsoft estimating 162.8M people (63M out of 130M homes) below broadband threshold based on speed of customer of MS products**
 - Wi-Fi new demarcation in the home

Interdisciplinary Telecom Program
UNIVERSITY OF COLORADO BOULDER


itp.colorado.edu

*Source: FN 63, FCC NPRM "Modernizing the FCC Data Program", Aug, 2017 **Source: NYT, "Digital Divide Is Wider Than We Think, Study Says", Dec. 4, 2018

Key Policy Questions (cont'd)

- Options for broadband data collection to address shortcomings
 - Geospatial data as currently required of mobile broadband
 - PPP model for munis on broadband using "City GIS Departments"
 - Addresses, Streets
 - Right of Ways, Easements, Parcels, Utility Poles, Meters
 - Overhead Strand, Underground Utility Routes
 - Deployment data at sub-census block geographies such as road segments, street-address or parcel levels

Key Policy Questions (cont'd)

- How long does collection of this data make sense?
 - Address accuracy issues
 - Be dynamic on goals over time (phases) to maintain focus

