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Consensus is an important task
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e Calibration
e Dissemination

e Coordination
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Abstracting the task

e Network of agents, each with an observation
e Communicate locally — exchange messages about observations

e Compute locally — estimate a function of all values
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There are many aspects to consider

e What are observations?

e continuous or discrete?
e scalar or vector?

e How can we communicate?

e point-to-point or broadcast?
e low resolution or high resolution?

e What do we compute?

e averages
e medians, quantiles
e convex optimization
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The goal(s) for today

® The basic mathematical model for consensus
® Routing and mobility can speed up convergence
© Broadcasting can trade off accuracy for speed

O The discreet charm of discrete messages
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Building a mathematical model
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e Set of n agents

e Agent i observes initial value z;(0) e R fori =1,2...n

m & it



DANCES Seminar > A simple mathematical model 8 /45

The data model

e Set of n agents
e Agent i observes initial value z;(0) e R fori =1,2...n

e Assume data is bounded : x;(0) € [0, 10], for example
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DANCES Seminar > A simple mathematical model
The communication graph

e Agents are arranged in a graph G = (V,€).
e Agents i can communicate with j if there is an edge (i,7) (e.g.
jeN).

e Bidirectional communication : agents exchange messages.
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Constraints on the communication
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e Time is slotted : only one transmission per slot.

- ‘it"calit UCSD Sarwate



10 / 45

DANCES Seminar > A simple mathematical model
Constraints on the communication

e Time is slotted : only one transmission per slot.

e Synchronous : use many edges, then update.

Sarwate
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Constraints on the communication
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e Time is slotted : only one transmission per slot.
e Synchronous : use many edges, then update.

e Asynchronous : edges chosen randomly in each slot.
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Measuring performance

The goal is to pass messages between agents such that they can
estimate the average of the initial observations:

x(t) — (me) 1
Averaging time T,.(n, €) is time when x(t) is within € of the average:

. [x(t) — ave - 1|
Tove(n, €) = supinf {]P’Al ( >e| <e
(o) = s it P \ o))
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A centralized solution
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6 Simple centralized algorithm:
@ Build a spanning tree

@ ® Gather all the values at
root

©® Compute and disseminate

@ average
®) ®)
® ©®
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A centralized solution

& (5

6 Simple centralized algorithm:
@ Build a spanning tree

@ ® Gather all the values at
root

©® Compute and disseminate
@ average

Pro: requires ©(n) messages
@ @ Con: completely centralized

® ©®
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Distributed synchronous consensus

Suppose each agent linearly combines itself and its neighbors:
xi(t+ 1) = Wyai(t) + Z Wija;(t)
JENG
> Wiy =1 Vi
J
Wi =Wy
Synchronous algorithm where the update after each slot is given by:
x(t+ 1) = Wx(t)

where W is a doubly stochastic matrix.
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A simple result

For synchronous consensus with update matrix W,
Tave(n,e) = © (|5|  Trelax(W) - log 6_1)
where Tielax (W) is the relaxation time of the matrix W :

1

TrelaX(W) = Tm .

Proof : W is the transition matrix of a Markov chain — consensus is
the convergence of the chain to its stationary distribution.
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A theme with variations

Survey article by Dimakis et al. in Proc. IEEE.

Synchronous DeGroot (1974), Tsitsiklis (1984)

Time-varying topologies Chatterjee-Seneta (1977), Tsitsiklis et al. (1986),
Jadbabaie et al. (2003), Ren-Beard (2005), Gao-Cheng (2006), Fagnani-Zampieri
(2008)

Asynchronous Boyd et al. (2006)

Quantization Kashyap et al. (2007), Nedic et al. (2009), Yildiz-Scaglione
(2008), Aysal et. al (2009), Kar-Moura (2010), Carli et al. (2010), Lavaie-Murray
(2010)

Discrete values Benezit et al. (2010)

Many others!
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Gossip uses random linear updates

At each time a random pair (i, j) € £ averages:

zi(t+1)=a;(t+1) = W

Each update is linear : x(t + 1) = W) ()x(t).

Theorem

Let W = E[W (9)] over the edge selection process. Then

Tave(n7 6) =0 (Trelax(W) : log 6_1)
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The implication for big graphs

For the grid with uniform selection, gossip takes ©(n?) transmissions!

Selecting edges at random is inefficient! Local exchange is inefficient!
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Network properties can accelerate convergence
Joint work with Alex Dimakis and Martin Wainwright

- ‘it"calit UCSD Sarwate



20 / 45

DANCES Seminar > Shrinking the graph

Q0
c
=]
S
©)
| -
=
=
=
o
‘0
7
o
Q0
=
<
o
(©
-
{e10)
o
(@)
O

09322223
oopwooo
LY
’000 O-O-P-O
ooooooo
LYY

00

m & it



DANCES Seminar > Shrinking the graph 20 / 45

Geographic gossip with routing

e Assume that packets can be routed between any two nodes.

- ‘it"calit UCSD Sarwate




DANCES Seminar > Shrinking the graph 20 / 45

Geographic gossip with routing

e Assume that packets can be routed between any two nodes.
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Geographic gossip with routing

e Assume that packets can be routed between any two nodes.

e Now select “neighbor” uniformly from all nodes and route
message.

e "“Effective graph” is now the complete graph.
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Example : the grid

algorithm
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With routing
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Example : the grid

algorithm ‘ Trelax (W)

0(n?)
O(n)

Local
With routing

This is unfair, since routing costs in number of hops.
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One-hop transmissions to reach consensus

Count number of hops (power) to get within € of the average:

algorithm ‘ one-hop transmission
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One-hop transmissions to reach consensus

Count number of hops (power) to get within € of the average:

algorithm ‘ one-hop transmission ‘
Local @(nz) Boyd et al.
With routing @(TL3/2) Dimakis,Sarwate, Wainwright
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One-hop transmissions to reach consensus

Count number of hops (power) to get within € of the average:

algorithm ‘ one-hop transmission ‘
Local @(nz) Boyd et al.
With routing @(TL3/2) Dimakis,Sarwate, Wainwright
Average on the way ©(n) Benezit et al.
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Gossip with mobility

e Same local transmission model.
e Mobile nodes reduce effective diameter to 2.

e Mobile nodes are accessed rarely.
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> Shrinking the graph
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Lower bounds on T}ejay (W)

e Merge all mobile nodes into a “super node.”

e Ticlax for induced chain < Tiqax for original chain.
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Lower bounds on T}ejay (W)

e Merge all mobile nodes into a “super node.”
e Ticlax for induced chain < Tiqax for original chain.

e At most a m-factor improvement.
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Network effects on convergence

algorithm transmissions
Local @(nQ) Boyd et al.
With routing @(n3/2) Dimakis-Sarwate-Wainwright
Average on the way O(n) Benezit et al.
Add m mobile o(z) Sarwate-Dimakis
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Network effects on convergence

algorithm transmissions
Local @(nQ) Boyd et al.
With routing @(n3/2) Dimakis-Sarwate-Wainwright
Average on the way O(n) Benezit et al.
Add m mobile o Sarwate-Dimakis
k-local O %; Sarwate-Dimakis
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Asymmetric gossip using broadcasting

Joint work with T.C. Aysal, M.E. Yildiz and A. Scaglione
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Wireless is inherently broadcast

e In a wireless network, all neighbors can hear a transmission.
e Can perform multiple computations per slot.

e When graph is well-connected, can get performance gains.
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Gossip in one direction
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Gossip in one direction

® ®
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Gossip in one direction

® ®
o @ e e All neighbors j € N of
® ©) ® © @ node ¢ can hear
® __ transmission.
@ 2 (5] N9 ® e Can do a simultaneous
b \ update z;(t + 1) =
@ .\ Q ¢ o i () + (1 —y)ai(t).
/
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Gossip in one direction
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Gossip in one direction

® ® ®
© o All neighbors j € N; of
® ® ® :
® ® ® node ¢ can hear
® transmission.
@ ® ©] ® e Can do a simultaneous
@ update z;(t + 1) =
® e o @ i () + (1= 7)ai(t).
@ ® ® — ¢ No information exchange
@ ) — can get consensus
® ® P (agreement) but not the
@ ©) ® @ true average.
\
@ e
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Analyzing the broadcast gossip algorithm

Again, update given by a matrix multiplication:

T
x(T) = (H W(it)> x(0)
t=1

For all £ we have W ()1 = 1, so consensus is stable.
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Benefits and challenges of broadcast

No coordination to exchange data.

Exploits potential long-range connections from shadowing/fading.

e No convergence to true average, but to consensus.

Important to control the MSE of the consensus.
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Main results

Algorithm reaches consensus almost surely:

P (hm x(t) = cl) =1
t—o0
The expected consensus value is the true average:

Elc] =z

Moreover, there is a closed form for the limiting MSE.
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Simulations : MSE
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Simulations : MSE

34 / 45
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Extensions

e Can look at effect of the wireless medium as well.
e Fading allows long-distance connections.

e Initial results suggest significant improvement when path loss is
not too severe.
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e Broadcasting is simpler than standard gossip — no exchange.

e More robust to packet drops which may occur in wireless.

m & it



DANCES Seminar > Trading accuracy for speed 36 / 45

Implications

e Broadcasting is simpler than standard gossip — no exchange.
e More robust to packet drops which may occur in wireless.

e Faster convergence in small-to-medium networks.

m & it



DANCES Seminar > Discrete consensus 37 /45

| | | | |M | | | ] | ]
1 T ] T ] T | T | T |
k k+1
2R 2R

Reaching consensus discretely
Joint work with Tara Javidi
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Typical assumptions are unrealistic

Existing work doesn't “look practical”:
e Transmit and receive real numbers
e Consensus is the only goal of the network

e Asymptotics and universality
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Synchronous quantized communication

e At each time t all neighbors (i, j) exchange quantized values
().
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e At each time t all neighbors (i, j) exchange quantized values
z;(t).
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Synchronous quantized communication

e At each time t all neighbors (i, j) exchange quantized values
z;(t).

e Messages i — j and 7 — ¢ must take no more than R bits.

e Update z;(t + 1) as a function of z;(t) and messages {z;(t)}.
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A simple protocol

zi(t+ 1) = (zi(t) — 2:(1) + Y Wiid(t).
JEN;U{i}

e Quantization error plus weighted sum of messages
e Iterations preserve sum ) . x;(t)
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So how well does it work?
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So how well does it work?

Grid, 100 nodes
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e Quantization is important for practical applications.
e Average consensus to within reasonable resolution can be fast.
e Overhead can be reduced by piggybacking on existing traffic.
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Conclusions

e Algorithm can use network resources to accelerate convergence.
e Reaching consensus may be faster than computing averages.

e Lower-resolution averages can be fast and require less overhead.
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Some challenges for the future

IEEE 802.xyz.pdq

e Implementing consensus in protocols for applications.
e Extending to other distributed computation problems.

e Quantifying robustness in rate, connectivity, etc.
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Thank you!
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