Classifying Internet One-way Traffic

Eduard Glatz, Xenofontas Dimitropoulos

ETH Zurich

May 15, 2012

Eduard Glatz, Xenofontas Dimitropoulos Classifying Internet One-way Traffic

Overview

- Classification scheme for dissecting one-way traffic that relies solely on flow-level data
- Observation on one-way traffic based on a massive dataset of 457 billion flows
- Show how one-way flows are useful for service availability monitoring

・ロン ・回 と ・ ヨ と ・ ヨ と

Preliminaries

- Study incoming one-way traffic at the network level: connections that do not receive a reply.
- Example causes of one-way traffic:
 - Failures & Policies
 - Attacks
 - Special application behavior

・ロン ・回 と ・ ヨン ・ ヨン

Preliminaries

- Study incoming one-way traffic at the network level: connections that do not receive a reply.
- Example causes of one-way traffic:
 - Failures & Policies
 - Attacks
 - Special application behavior
- Sampling and asymmetric routing can result in artificial one-way traffic
- One-way traffic can be measured in edge networks

・ロン ・回 と ・ ヨン ・ ヨン

Classification Scheme

- Associate each one-way flow with a number of signs
- Introduce 18 signs exploiting in 4 cases techniques from the literature
- Classify flows based on their signs
- Classes:
 - Unreachable services
 - P2P applications
 - Scanning
 - Backscatter
 - Suspected Benign
 - Bogon

Signs: Host pair behavior

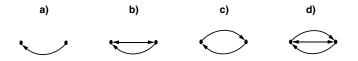


Figure: Mixture of incoming one- and two-way flows exchanged between a host pair. Hosts are represented by nodes and the presence of inflow/outflow/biflows by arrows.

- 4 回 2 - 4 □ 2 - 4 □

Signs: Host pair behavior

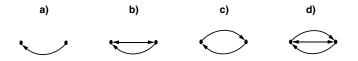


Figure: Mixture of incoming one- and two-way flows exchanged between a host pair. Hosts are represented by nodes and the presence of inflow/outflow/biflows by arrows.

- End-hosts-communicating: One-way flow between productive host pair
- Limited dialog: One-way flows between unproductive host pair

(日) (同) (E) (E) (E) (E)

Signs: Local host behavior

- Unused local address: Unpopulated local IP address
- Service unreachable: Unanswered request to local service
- Peer-to-peer¹: Flow towards local P2P host

Signs: Remote host behavior

- \blacktriangleright Service sole reply: no biflow on srcIP \land dstPort ${\geq}1024$ \land srcPort <1024
- Remote scanner 1²: TRW algorithm (suspected scanner)
- ▶ Remote scanner 2³: Host classification (suspected scanner)
- Remote non-scanner: TRW algorithm (suspected regular host)

² J. Jung, V. Paxson, A. Berger, and H. Balakrishnan. Fast portscan detection using sequential hypothesis testing. In Proceedings of the IEEE Symposium on Security and Privacy, 2004

³M. Allman, V. Paxson, and J. Terrell. A brief history of scanning. In Proceedings of the 7th ACM SIGCOMM IMC, 2007

Signs: Flow feature

- Artifact: UDP/TCP flow with both port numbers=0
- Single packet: Flow contains one packet only
- Large flow: Flow carries \geq 10 packets or \geq 10240 bytes
- Bogon: Source IP belongs to bogon space
- Protocol: IP protocol type of flow

イロン イヨン イヨン イヨン

Classification Rules

Final classifier includes 17 classification rules

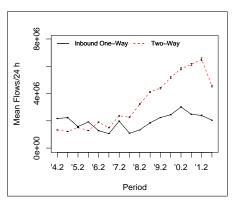
Class Name	Rule #	Flow Membership Rules	
Malicious	1	$\{TRWscan, \overline{HCscan}, \overline{PotOk}\} \Rightarrow Scanner$	
Scanning	2	$\{HCscan, \overline{TRWscan}, \overline{TRWnom}, \overline{PotOk}\} \Rightarrow Scanner$	
	3	$\{TRWscan, HCscan, \overline{PotOk}\} \Rightarrow Scanner$	
	4	$\{TRWnom, HCscan\} \Rightarrow Scanner$	
	5 {GreyIP, Onepkt, $\overline{TRWscan}$, \overline{HCscan} , \overline{Backsc} , \overline{ICMP} , \overline{UDP} , \overline{bogon} } \Rightarrow Scanner		
	6	$\{GreyIP, \overline{TRWscan}, \overline{HCscan}, \overline{Onepkt}, \overline{ICMP}, \overline{Backsc}, \overline{bogon}\} \Rightarrow Scanner$	
	7	$\{\textit{Onepkt}, \overline{\textit{GreyIP}}, \overline{\textit{ICMP}}, \overline{\textit{TRWscan}}, \overline{\textit{HCscan}}, \overline{\textit{TRWnom}}, \overline{\textit{bogon}}, \overline{\textit{P2P}}, \overline{\textit{Unreach}}, \overline{\textit{PotOk}}, \overline{\textit{Backsc}}, \overline{\textit{Large}}\} \Rightarrow \textit{Scanner}$	
	8	$\{GreyIP, Onepkt, \overline{TRWscan}, \overline{HCscan}, \overline{Backsc}, \overline{ICMP}, \overline{TCP}, \overline{bogon}\} \Rightarrow Scanner$	
	9	$\{ICMP, \overline{TRWscan}, \overline{TRWnom}, \overline{HCscan}, \overline{InOut}, \overline{bogon}, \overline{PotOk}\} \Rightarrow Scanner$	
Backscatter	10	$\{Backsc, \overline{TRWscan}, \overline{HCscan}, \overline{P2P}, \overline{InOut}, \overline{PotOk}\} \Rightarrow Backscatter$	
Service	11	$\{Unreach, \overline{TRWscan}, \overline{HCscan}, \overline{bogon}, \overline{P2P}\} \Rightarrow Unreachable$	
Unreachable			
Benign P2P	12	$\{P2P, \overline{TRWscan}, \overline{HCscan}, \overline{bogon}\} \Rightarrow P2P$	
Scanning			
Suspected	13	$\{PotOk, \overline{Unreach}, \overline{P2P}, \overline{TRWnom}, \overline{bogon}\} \Rightarrow Benign$	
Benign	14	$\{Large, \overline{GreyIP}, \overline{TRWscan}, \overline{HCscan}, \overline{P2P}, \overline{Unreach}, \overline{PotOk}, \overline{ICMP}, \overline{Backsc}, \overline{bogon}, \overline{TRWnom}\} \Rightarrow Benign$	
	15	$\{\textit{TRWnom}, \textit{\overline{GreyIP}}, \textit{\overline{HCscan}}, \textit{\overline{P2P}}, \textit{\overline{Unreach}}, \textit{\overline{bogon}}, \textit{\overline{Backsc}}\} \Rightarrow \textit{Benign}$	
	16	$\{\textit{ICMP},\textit{InOut},\overline{\textit{TRWscan}},\overline{\textit{HCscan}},\overline{\textit{TRWnom}},\overline{\textit{bogon}},\overline{\textit{PotOk}}\} \Rightarrow \textit{Benign}$	
Bogon	17	$\{bogon, \overline{TRWscan}, \overline{HCscan}, \overline{Backsc}\} \Rightarrow Bogon$	

・ロン ・四 ・ ・ ヨン ・ ヨン

Data-Sets

- Use data from the Swiss academic backbone network (SWITCH)
- Analyze the first 400 hours of each Feb and Aug between 2004 and 2011
- The studied traffic data correspond to:
 - 457 billion flows
 - 7.41 petabytes
 - cover 9% of the total number of flows

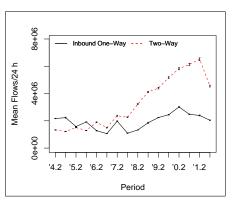
・ロン ・回 と ・ ヨ と ・ ヨ と


Data Sanitization

- Double-counting elimination reduces total traffic volume by 32.3%
- Defragmentation reduces the number of flows by a fraction ranging between 20.6% and 39.6% for different years
- Bi-flow Pairing:
 - For TCP and UDP based on standard 5-tuple
 - For other protocols based on 3-tuple

イロン イヨン イヨン イヨン

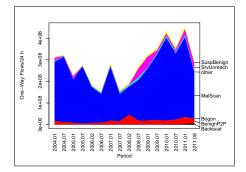
Evolution of One- and Two-way Traffic


- One-way flows are a large fraction of all flows:
 - In 2004, 2 out of every 3 flows were one-way
 - From 2007 to 2010, 1 out of every 3 flows were one-way

< 17 ▶

Evolution of One- and Two-way Traffic

- One-way flows are a large fraction of all flows:
 - In 2004, 2 out of every 3 flows were one-way
 - From 2007 to 2010, 1 out of every 3 flows were one-way
- The number of one-way flows in 2011 is almost equal to 2004
- The fraction of one-way flows has declined



A (1) > (1)

Composition of One-way Traffic

Class	% of flows	% of pkts	pkts/flow
Scanning	83.5%	62.6%	1.6
P2P applications	6.7%	13.0%	6.8
Unreach services	4.8%	10.1%	4.1
Suspected Benign	2.6%	9.1%	12.1
Other	2.2%	4.7%	4.6
Backscatter	0.3%	0.5%	3.3

 The top sources of one-way traffic are scanning, P2P protocols, and unreachable services

・ロト ・回ト ・ヨト

.⊒ .⊳

Service Availability Monitoring

- One-way flows are very useful for service availability monitoring
- Traditional service availability monitoring is based on active probing

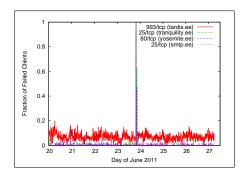
イロト イヨト イヨト イヨト

Service Availability Monitoring

- One-way flows are very useful for service availability monitoring
- Traditional service availability monitoring is based on active probing
- Advantages of flow-based approach:
 - Provides a tangible assessment of the impact of disruptions

イロト イヨト イヨト イヨト

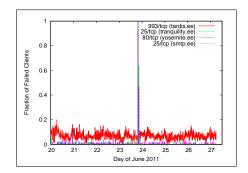
- Discovers running services without requiring manual configuration
- Exploits passive measurements


Outages and Misconfigurations in ETH Zurich

- Examine a week of NetFlow data from the EE Department of ETH Zurch
- Found 32 main services (> 99% availability) and 11 transient services

イロト イヨト イヨト イヨト

Outages and Misconfigurations in ETH Zurich


- Examine a week of NetFlow data from the EE Department of ETH Zurch
- Found 32 main services (> 99% availability) and 11 transient services
- Identified a coinciding global outage

- (同) (三)

Outages and Misconfigurations in ETH Zurich

- Examine a week of NetFlow data from the EE Department of ETH Zurch
- Found 32 main services (> 99% availability) and 11 transient services
- Identified a coinciding global outage
- During the identified interval 287,583 unique IP addresses failed to access target services!

Conclusions

- Classification scheme for one-way traffic that relies on 18 signs derived from flow data
- Observations based on a very large data-set:
 - One-way flows are a large fraction of all flows
 - In terms of flows, the share of one-way traffic has declined since 2004
 - The top sources of one-way traffic are scanning, P2P protocols, and unreachable services
- One-way traffic is very useful for assessing the impact of failures

・ロン ・回 と ・ ヨ と ・ ヨ と

Questions?

Contact: fontas@gmail.com

E. Glatz and X. Dimitropoulos. Classifying Internet One-way Traffic. TIK-Report 336, ETH Zurich, May 2012

イロト イヨト イヨト イヨト

Validation

- Collect packet traces from a small campus network
- Exploit additional information:
 - Extended host profiles
 - ICMP types and codes
 - TCP flags (Check protocol state machine)
 - DPI-based application identification⁴
 - Precise timestamps

⁴H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K. Lee. Internet traffic classification demystified: myths, caveats, and the best practices. ACM CoNEXT, 2008

Validation

- Collect packet traces from a small campus network
- Exploit additional information:
 - Extended host profiles
 - ICMP types and codes
 - TCP flags (Check protocol state machine)
 - DPI-based application identification⁴
 - Precise timestamps

Class Name	Recall [%]	Precision [%]
Malicious Scanning	99.9	99.8
Service Unreachable	99.6	96.1
Benign P2P Scanning	95.3	95.5
Backscatter	62.4	88.4
Suspected Benign	85.1	75.0
Bogon	40.4	100.0

⁴H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos, and K. Lee. Internet traffic classification demystified: myths, caveats, and the best practices. ACM CoNEXT, 2008

Eduard Glatz, Xenofontas Dimitropoulos

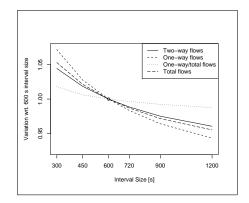
Classifying Internet One-way Traffic

Outages and Misconfigurations in ETH Zurich

- Found server that was not reachable during the studied week in total by 2.2 million unique clients!
- What was this server? Hint: Switzerland is famous for chocolate, banking, swiss army knifes, and watches

イロン イヨン イヨン イヨン

Outages and Misconfigurations in ETH Zurich


- Found server that was not reachable during the studied week in total by 2.2 million unique clients!
- What was this server? Hint: Switzerland is famous for chocolate, banking, swiss army knifes, and watches
- Popular NTP server swisstime.ee.ethz.ch preconfigured in NTP clients and used in NTP "hello world" examples
- It was not reachable to 12.9% of its clients cause by invalid CRC checksums and a filtering policy

・ロン ・回 と ・ ヨン ・ ヨン

Impact of the Interval Size

Doubling the interval size:

- decreases absolute count metrics by 3-5%.
- decreases relative volume metrics by 1.2% and does not
- decrease further with an increasing interval size.

・ロト ・回ト ・ヨト

Signs

Sign Type	Sign Name	Detection Criterion/Algorithm	
Host pair behavior	End-hosts-communicating	One-way flow between productive host pair	
	Limited dialog	One-way flows between unproductive host pair	
Remote host behavior	Service sole reply	no biflow on srcIP \wedge dstPort \geq 1024 \wedge srcPort $<$ 1024	
	Remote scanner 1	TRW algorithm (suspected scanner)	
	Remote scanner 2	Host classification (suspected scanner)	
	Remote non-scanner	TRW algorithm (suspected regular host)	
Local host behavior	Unused local address	Unpopulated local IP address	
	Service unreachable	Unanswered request to local service	
	Peer-to-peer	Flow towards local P2P host	
Flow feature	Artifact	UDP/TCP flow with both port numbers=0	
	Single packet	Flow contains one packet only	
	Large flow	Flow carries \geq 10 packets or \geq 10240 bytes	
	Bogon	Source IP belongs to bogon space	
	Protocol	IP protocol type of flow	

Eduard Glatz, Xenofontas Dimitropoulos Classifying Internet One-way Traffic

・ロン ・回 と ・ ヨ ・ ・ ヨ ・ ・

æ