# Opportunistic IPv6 Insight via Abusive Traffic

Robert Beverly, Geoffrey Xie

Naval Postgraduate School {rbeverly,xie}@nps.edu February 8, 2012

CAIDA Workshop on Active Internet Measurements



R. Beverly et al. (NPS)

# Outline

# 1 Introduction

2 IPv6 as Abusive Traffic Enabler

### 3 Methodology

### 4 Results

### 5 Summary



R. Beverly et al. (NPS)

#### Introduction

### What we can all (sort of) agree on

### Crying Wolf Again? (U.S. perspective)

- Exhaustion of v4 addresses finally exerting (economic) pressure on providers to use IPv6
- More and more devices (e.g. mobile)
- Widespread OS support, auto-tunneling
- Carrier-grade NAT is bad (viz. E2E)
- U.S. government mandates

#### Err....



R. Beverly et al. (NPS)

#### Introduction

### What we can all (sort of) agree on

### Crying Wolf Again? (U.S. perspective)

- Exhaustion of v4 addresses finally exerting (economic) pressure on providers to use IPv6
- More and more devices (e.g. mobile)
- Widespread OS support, auto-tunneling
- Carrier-grade NAT is bad (viz. E2E)
- U.S. government mandates

#### Err....

| ; <<>> DiG 9.8.1 <<>> AAAA www.disa.mil<br>;; global options: +cmd<br>;; Got answer:<br>;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 63718<br>;; flags: qr rd ra; QUERY: 1, ANSWER: 0, AUTHORITY: 1, ADDITIONAL: 0 |                            |                   |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------|--|
| ;; QUESTION SECTION:<br>;www.disa.mil.                                                                                                                                                                                    | IN AAAA                    |                   |  |
| R. Beverly et al. (NPS)                                                                                                                                                                                                   | Opportunistic IPv6 Insight | CAIDA AIMS-4 3/31 |  |

### **IPv6 Measurements**

### Many independent IPv6 measurement efforts:

- Multiple web-bug / javascript
- Passive traffic analysis
- Active probing
- Dark/Grey nets



AB > 4 B > 4 B

# Our Hypothesis:

### Our Hypothesis:

- Opportunistically utilize <u>abusive</u> IPv6 traffic
- Abusive traffic has been productive in other measurement efforts
- Suggests at a means to obtain (a large number of) samples from the IPv6 edge, with *different* sample bias
- Additionally, reveal properties/prevalence of IPv6 as emergent attack vector

This talk: initial experiments to test the opportunistic abusive IPv6 traffic hypothesis (read as: ongoing effort).



(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

# Outline

### 1 Introduction



IPv6 as Abusive Traffic Enabler

### 3 Methodology

### 4 Results

### 5 Summary



R. Beverly et al. (NPS)

# IPv6 Abusive Traffic

### What do we mean by "abusive?"

- Many IPv6 protocol-specific attacks, not in scope here
- Instead: Traditional abusive traffic (DoS, messaging, worm propagation, etc) using IPv6 transport

### Why might we expect abusive IPv6 traffic?

- Bad guys will exploit any possible attack vector
- Easy: incestuous abusive/malicious code libraries permit widespread adoption
  - e.g. THC-IPV6
- Near zero cost to test for IPv6 connectivity
- Newly adopted protocols often rife with vulnerabilities
- All old security problems in IPv4 are new again...

# IPv6 Abusive Traffic

#### Fly under the radar of monitoring, or evade blocking:

- Firewalls, filters, IDS, DPI, etc rarely configured to support IPv6
- Tunnels and auto-tunnel mechanisms (e.g. 6to4, Teredo) subvert administrative security policies and protection/detection
- E.g. residential outbound TCP SMTP blocked only for IPv4
- Address agility, IPv6 RBLs not as well-maintained:
  - http://www.ipv6whitelist.eu
- Lots of buggy implementations:
  - Ask us about our IDS fuzz testing where we can throw snort into infinite recursion via crafted IPv6 packets!



#### Bad stuff is IPv6 connected:

| Database              | Entries w/ A | Entries w/ AAAA |
|-----------------------|--------------|-----------------|
| malwaredomainlist.com | 2095         | 35 (1.7%)       |
| malwaredomains.com    | 845          | 10 (1.2%)       |
| phishtank.com         | 3318         | 16 (0.5%)       |

Coincidentally or intentionally on IPv6?

• (Collected and probed February, 2012)



AB > 4 B > 4 B

### Unsurprisingly, bad stuff is IPv6 connected:

| Database              | Entries w/ Unique A |    | RIPE ASN |
|-----------------------|---------------------|----|----------|
|                       | AAAA                |    |          |
| malwaredomainlist.com | 35                  | 10 | 8        |
| malwaredomains.com    | 10                  | 5  | 5        |
| phishtank.com         | 16                  | 10 | 9        |

- Not all in one AS
- Mostly in Europe (none in US)
- (Collected and probed February, 2012)



3 > < 3 >

#### Lots of anecdotal evidence:

- Trojans: Troj/LegMir-AT IPv6 IRC (public reference)
- Worms: W32/VB-DYF (public reference)
- Wordpress malware using IPv6 site-scraping (private conversation with CDN, 2011)

#### Take-away:

- There exist sources of abusive IPv6 traffic
- Even if traffic is small relative to v4, still interesting
- Exploit abusive IPv6 traffic for measurement of the IPv6 Internet



#### Lots of anecdotal evidence:

- Trojans: Troj/LegMir-AT IPv6 IRC (public reference)
- Worms: W32/VB-DYF (public reference)
- Wordpress malware using IPv6 site-scraping (private conversation with CDN, 2011)

#### Take-away:

- There exist sources of abusive IPv6 traffic
- Even if traffic is small relative to v4, still interesting
- Exploit abusive IPv6 traffic for measurement of the IPv6 Internet



イロト イヨト イヨト

# Outline

# 1 Introduction

- 2
- IPv6 as Abusive Traffic Enabler

### 3 Methodology

4 Results

### 5 Summary



R. Beverly et al. (NPS)

æ

3 > < 3 >

# IPv6 Honeypot

### Initial experiment: IPv6 Spam Honeypot

- Easy and popular method to attract abusive traffic: spam honeypot
- We built and instrumented an IPv6 spam honeypot

#### **Prior Work**

- ripe.net: Not a honeypot; 3.5% of IPv6 emails spam (2010)
- cert.br: Total of 6 IPv6 HTTP hits over 3 months (2009)
- soton.ac.uk: Not a honeypot; "roughly half of IPv6 email is spam." (2008)

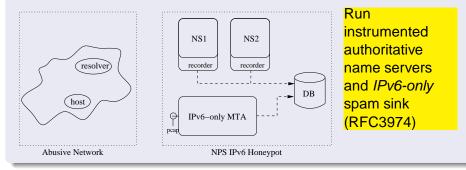
### Idea: run a IPv6 spam honeypot before/after World IPv6 day

3 > < 3 >

# IPv6 Honeypot

### Initial experiment: IPv6 Spam Honeypot

- Easy and popular method to attract abusive traffic: spam honeypot
- We built and instrumented an IPv6 spam honeypot


#### **Prior Work**

- ripe.net: Not a honeypot; 3.5% of IPv6 emails spam (2010)
- cert.br: Total of 6 IPv6 HTTP hits over 3 months (2009)
- soton.ac.uk: Not a honeypot; "roughly half of IPv6 email is spam." (2008)

Idea: run a IPv6 spam honeypot before/after World IPv6 day

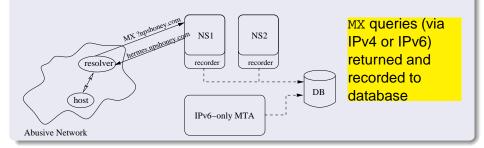
∃ ► < ∃ ►</p>

#### IPv6 Pot:





R. Beverly et al. (NPS)


**Opportunistic IPv6 Insigh** 

CAIDA AIMS-4 14 / 31

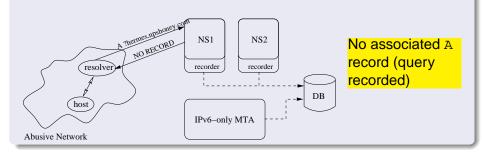
э

(日) (四) (三) (三)

#### IPv6 Pot:






R. Beverly et al. (NPS)

CAIDA AIMS-4 15 / 31

э

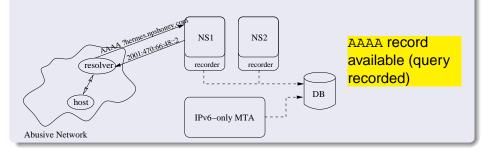
・ロト ・ 四ト ・ ヨト ・ ヨト

#### IPv6 Pot:





R. Beverly et al. (NPS)


Opportunistic IPv6 Insight

CAIDA AIMS-4 16 / 31

э

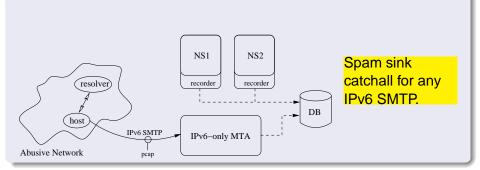
・ロト ・ 四ト ・ ヨト ・ ヨト

#### IPv6 Pot:





R. Beverly et al. (NPS)


Opportunistic IPv6 Insight

CAIDA AIMS-4 17 / 31

э

・ロト ・ 四ト ・ ヨト ・ ヨト

#### IPv6 Pot:





R. Beverly et al. (NPS)

Opportunistic IPv6 Insight

CAIDA AIMS-4 18 / 31

æ

# **Attracting Traffic**

### **Attracting Traffic**

- Dynamic HTML text at bottom of our group web pages generates: nonce@npshoney.com
- Records: IPv4/v6 source, browser, resource to database
- Additionally, manually visited several spam URLs and entered our email



The Sec. 74

#### Methodology

# Honeypot Analysis

#### What can we learn:

- How many attempted spam SMTP connections resulted in an email?
- Do abusive spam (hosts/bots) use IPv6 when it's the only transport available?
- Reconstruct how mined email addresses get to IPv6-capable spammers
- IPv6 edge:
  - Addresses for tracing
  - Prevalence of auto-tunneling
  - Mapping of IPv4 to IPv6



3 > < 3 >

#### Methodology

## Validation Surprisingly Difficult

- None of: gmail, yahoo, NPS, MIT, UCSD worked
- Ended up using mailman.nanog.org to validate

#### gmail

Delivery to the following recipient failed permanently:

valid@npshoney.com

```
Technical details of permanent failure:
The recipient server did not accept our requests to connect. Learn more at http://mail.google.com/support/bin/answer.py?answer=7720
[hermes.npshoney.com. (10): Destination address required]
```

#### NPS

Delivery has failed to these recipients or groups:

valid@mpshoney.com A problem occurred during the delivery of this message to this e-mail address. Try sending this message again. If the problem continues, please contact your helpdesk.

R. Beverly et al. (NPS)

**Opportunistic IPv6 Insight** 

## Outline

# 1 Introduction

2 IPv6 as Abusive Traffic Enabler

### 3 Methodology



### 5 Summary



R. Beverly et al. (NPS)

æ

イロト イヨト イヨト イヨト

### Caveat

#### Caveat

- Started our honeypot just before World IPv6 day
- Unfortunately, we had a bug in our DNS instrumentation :(
- Now fixed
- Results still interesting



AB > 4 B > 4 B

### **Received IPv6 Spam**

#### June 8, 2011 – July 8, 2011

- Received a total of 14 spam email messages via IPv6
- Variety of spam (Nigerian, phishing, products, backscatter)
- Variety of languages (English, Russian, Chinese)
- One 6to4 source
- All sources "server" hosts; did not observe bot/hacked "edge"



∃ ► < ∃ ►</p>

### **Received IPv6 Spam**

### June 8, 2011 – July 8, 2011 (chronologically listed)

| SMTP name           | IPv6                                 |
|---------------------|--------------------------------------|
| smtp.softcloud.ru   | 2002:c2be:6b0::c2be:6b0              |
| vwp4845.webpack     | 2a01:488:42::53a9:1b45               |
| .hosteurope.de      |                                      |
| mo-p07-ob6.rzone.de | 2a01:238:20a:202:53f7::1             |
| nb24.sierhuis.com   | 2a02:348:47:61e9::1                  |
| sl4.sahara.net.sa   | 2a02:d70:10:0:250:56ff :feae:1bde    |
| ncu.edu.cn          | 2001:250:6c00:f02:230:48ff:feba:69d2 |
| aruana2.ufscar.br   | 2001:12f0:503:100::22                |
| s11.usassh.com      | 2607:fd70:0:6::563f:13e3             |
| cf10.hc.ru          | 2a01:d8:4:4:230:48ff:feb8:36e8       |
| re02.hc.ru          | 2a01:d8:4:1:230:48ff:fe67:9c0        |
| cf5.hc.ru           | 2a01:d8:4:1:230:48ff:fed2:e722       |

R. Beverly et al. (NPS)

э

ヘロン 人間 とくほ とくほう

### **Received IPv6 Spam**

### June 8, 2011 – July 8, 2011 (chronologically listed)

| IPv6                                 | ASN   | Cntry | Туре        |
|--------------------------------------|-------|-------|-------------|
| 2002:c2be:6b0::c2be:6b0              | 6to4  | RU    | backscatter |
| 2a01:488:42::53a9:1b45               | 20773 | DE    | Product?    |
| 2a01:238:20a:202:53f7::1             | 6724  | DE    | Nigerian    |
| 2a02:348:47:61e9::1                  | 35470 | NL    | Phish       |
| 2a02:d70:10:0:250:56ff:feae:1bde     | 41176 | SA    | Phish       |
| 2001:250:6c00:f02:230:48ff:feba:69d2 | 4538  | CN    | Product?    |
| 2001:12f0:503:100::22                | 1916  | BR    | Phish       |
| 2607:fd70:0:6::563f:13e3             | 1426  | US    | Nigerian    |
| 2a01:d8:4:4:230:48ff:feb8:36e8       | 5537  | RU    | backscatter |
| 2a01:d8:4:1:230:48ff:fe67:9c0        | 5537  | RU    | backscatter |
| 2a01:d8:4:1:230:48ff:fed2:e722       | 5537  | RU    | backscatter |

э

### World IPv6 Month Experiment

#### World IPv6 Month Experiment

- We received IPv6 spam
- Variety of sources, AS's, countries, and types encouraging
- Warrants keeping the infrastructure up and running during (the assured) IPv6 adoption
- We started a new (on-going) experiment in February, 2012 with bugs and kinks worked out



### Name Server Hits

### • New experiment thus far: Jan 29, 2012 – Feb 4, 2012

### Name Server Activity for npshoney.com

| Query | NS1      | NS2        |
|-------|----------|------------|
| MX    | 28 (28%) | 39 (27%)   |
| A     | 56 (56%) | 81 (56%)   |
| AAAA  | 8 (8%)   | 6 (4%)     |
| Other | 8 (8%)   | 18 (12.5%) |
| Total | 100      | 144        |



R. Beverly et al. (NPS)

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

### Name Server Hits

• New experiment thus far: Jan 29, 2012 - Feb 4, 2012

#### Name Server Activity for npshoney.com

| Record | Queries for MTA | Distinct  |
|--------|-----------------|-----------|
| MX     | 28 (100%)       | 28 (100%) |
| A      | 77 (56%)        | 31 (40%)  |
| AAAA   | 1 (8%)          | 1 (100%)  |

#### **Observations:**

- One AAAA lookup for our MTA, but no connection attempt!?
- MX query rate of  $\simeq$  7/day too low. Need to attract more spam.
- Surprising number of A queries not for our MTA (who is querying?)
- Even ANY and AXFR requests!

# Outline

# 1 Introduction

- 2 IPv6 as Abusive Traffic Enabler
- 3 Methodology

### 4 Results





æ

글 ▶ ∢ 글 ▶

## Summary

- Existence proof of abusive IPv6 traffic:
  - $\simeq 1 2\%$  of malware, phishing web sites are IPv6 reachable
  - Our IPv6-only honeypot received IPv6 spam!
- IPv6 abusive traffic may yield interesting measurement insights we cannot otherwise obtain
- Other opportunistic measurement opportunities (e.g. BitTorrent to avoid blocking)
- More (hopefully) to come...

### Thanks! Questions?



R. Beverly et al. (NPS)

3 > < 3 >