

Robert Kisteleki RIPE NCC R\&D

"You are here"

Host	IPv4 DNS entry	IPv6 DNS entry
www.caida.org	\checkmark	*
www.ripe.net	\checkmark	\checkmark
www.bbn.com	\checkmark	\checkmark
www.mit.edu	\checkmark	*
www.nps.edu	\checkmark	*
www.samknows.com	\checkmark	*
www.ugov.gov	\checkmark	*
www.simula.no	\checkmark	*
www.freedesktop.org	\checkmark	*
www.apnic.net	\checkmark	\checkmark
www.cc.gatech.edu	\checkmark	*
www.icir.org	\checkmark	*
www.cs.colostate.edu	\checkmark	*
www.dhs.gov	\checkmark	$*^{*}$
www.eecs.northwestern.edu	\checkmark	*
www.google.com	\checkmark	$\boldsymbol{V}^{* *}$
www.cs.umd.edu	\checkmark	*
www.lip6.fr	\checkmark	*
www.icsi.berkeley.edu	\checkmark	*
www.isc.org	\checkmark	\checkmark

What is RIPE Atlas?

Robert Kisteleki - ISMA 2012 AIMS-4

NCC

Measuring IPv6

"96 more bits, no magic"

- For us, almost everything is symmetrical in IPv4/ IPv6 sense, with very few exceptions:
- in the controlling infrastructure
- about how a probe configures itself
- and of course, in some of the results...

Configuration and built-in measurements

```
Sponsor: atlas@ripe.net
Firmware Version: 4280
MAC Address: 00:20:4A:C8:27:19
\begin{tabular}{lll} 
& IPv4 & IPv6 \\
Internet Address: & \(\underline{217.146 .112 .1}\) & \(\underline{\text { 2a00:1940:100:1:220:4aff:fec8:2719 }}\) \\
Local Address: & 192.168 .1 .100 & 2a00:1940:100:1:220:4aff:fec8:2719/64 \\
Gateway: & 192.168 .1 .1 & Undetermined/Unknown \\
DNS Resolver: & \(217.146 .105 .2,217.146 .97 .10\) & Undetermined/Unknown \\
AS Number: & \(\underline{\text { AS16353 }}\) & \(\underline{\text { AS16353 }}\)
\end{tabular}
Your probe is configured dynamically
Your probe does not have a public DNS entry
```


Results - some differences between v4/v6

Select measurement to visualise: k.root-servers.net \quad-IPv4 IPv6 Showing 1153 results. Refresh now! Permalink

The map below shows the color coding for the RTT (Round Trip Time) for the particular destination for each Atlas probe. The minimum/average/maximum values are based on standard "ping" measurements. We are showing results of measurements to root DNS servers only if they are newer than half an hour and for the rest if they are newer than 2 hours.
You can click on each point to get more information.
Showing results of last measurements. Key (minimum RTT): $\nabla<=10 \mathrm{~ms} \nabla<=20 \mathrm{~ms} \nabla<=30 \mathrm{~ms} \nabla<=40 \mathrm{~ms} \nabla<=50 \mathrm{~ms} \nabla<=100 \mathrm{~ms} \nabla<=200 \mathrm{~ms}$ $<=300 \mathrm{~ms} \nabla<=500 \mathrm{~ms} \nabla>500 \mathrm{~ms}$ (unreachable)

Results - some differences between v4/v6

Select measurement to visualise: k.root-servers.net \rightarrow IPv4 ©IPv6 Showing 476 results. Refresh now! Permalink

The map below shows the color coding for the RTT (Round Trip Time) for the particular destination for each Atlas probe. The minimum/average/maximum values are based on standard "ping" measurements. We are showing results of measurements to root DNS servers only if they are newer than half an hour and for the rest if they are newer than 2 hours.
You can click on each point to get more information.
Showing results of last measurements. Key (minimum RTT): $\nabla<=10 \mathrm{~ms} \nabla<=20 \mathrm{~ms} \nabla<=30 \mathrm{~ms} \nabla<=40 \mathrm{~ms} \nabla<=50 \mathrm{~ms} \nabla<=100 \mathrm{~ms} \nabla<=200 \mathrm{~ms} \nabla$ $<=300 \mathrm{~ms} \nabla<=500 \mathrm{~ms} \nabla>500 \mathrm{~ms}$ (unreachable)

Results - some differences between v4/v6

\qquad - - IPv4 or

IPv6. Showing 1196 results.

The map below shows, for each Atlas probe, which root DNS server instance the probe ends up querying, when they ask a particular root server. This is most useful for servers which use anycasting. In other words, it shows the "gravitational radius" for root DNS server instances. The coloring is used either to highlight significant (e.g. global) nodes, or to group nodes in the same region (Europe, North America, Asia, etc.). You can find the key below the map.
We are showing results of measurements only if they are newer than a day. You can click on each point to get more information.

RIPE
NCC

Results - some differences between v4/v6

a.root-servers.net

\qquad IPv4 or IPv6. Showing 495 results.
Refresh now!
Get Permalink

The map below shows, for each Atlas probe, which root DNS server instance the probe ends up querying, when they ask a particular root server. This is most useful for servers which use anycasting. In other words, it shows the "gravitational radius" for root DNS server instances. The coloring is used either to highlight significant (e.g. global) nodes, or to group nodes in the same region (Europe, North America, Asia, etc.). You can find the key below the map. We are showing results of measurements only if they are newer than a day. You can click on each point to get more information.

RIPE
NCC

Results - by-products

Resource coverage of RIPE Atlas probes

The following tables show how many Atlas probes there are in different ASNs (separately for IPv4/IPv6 connections), IPv4/IPv6 prefixes, and countries. The location is based on the geolocation data provided by the probe hosts.

You can click on ASNs and prefixes to get their explanation from RIPEstat. Clicking on the number of probes show where those probes are on a map. The tables are also reorderable by clicking on the header.

ASN coverage for IPv4:		ASN coverage for IPv6:		Prefix coverage for IPv4:		Prefix coverage for IPv6:		Country coverage:	
ASN $\downarrow \uparrow$	Number of up probes $\downarrow \uparrow$	ASN $\downarrow \uparrow$	Number of up probes $\downarrow \uparrow$	IPv4 prefix $\downarrow \uparrow$	Number of up probes $\downarrow \uparrow$	IPv6 prefix $\downarrow \uparrow$	Number of up probes $\downarrow \uparrow$	Country code $\downarrow \uparrow$	Number of up probes $\downarrow \uparrow$
3320	54	6939	38	79.192.0.0/10	15	2001:470:/32	53	DE	192
6830	25	1103	29	84.128.0.0/10	10	2002::/16	36	GB	113
12322	25	4589	14	83.160.0.0/14	8	2001:688://32	15	FR	94
3265	17	12322	14	193.0.10.0/23	7	2001:980::/32	14	NL	71
31334	15	3265	11	81.187.0.0/16	7	2a01:e00:/26	14	US	61
5089	12	20712	7	82.224.0.0/12	7	2001:4dd0::/32	8	RU	56
2119	12	8422	6	91.0.0.0/10	7	2001:8b0:/32	7	IT	48
20712	11	3333	5	80.100.0.0/15	6	2001:16d8://32	7	SE	38
20825	11	39326	5	82.240.0.0/12	5	2001:610::/32	7	DK	33
3209	10	16150	5	178.200.0.0/15	5	2001:67c:2e8::/48	6	CH	32
9143	9	30781	4	78.192.0.0/10	5	2001:1418::/32	5	AU	30
2856	9	3292	4	95.96.0.0/15	5	2a01:348::/32	5	CZ	28
3292	9	51827	4	85.240.0.0/13	5	2a02:2918::/32	4	AT	28
4739	8	12989	3	93.192.0.0/10	5	2001:630:/32	4	NO	27
6805	8	1213	3	217.80.0.0/12	4	2a01:198::/32	4	ES	25
3215	6	786	3	81.56.0.0/15	3	2001:5c0:1400:/39	4	PL	24
24923	6	37105	3	62.194.0.0/16	3	2001:1620:/32	3	PT	21
4802	6	15389	3	95.112.0.0/13	3	2a02:e90://32	3	BE	21
3269	6	13030	3	82.197.160.0/19	3	2001:43e8::/32	3	FI	19
21502	6	34225	3	41.216.192.0/24	3	2001:690:/32	3	UA	17
15557	5	29134	3	80.56.0.0/16	3	2a01:630::/32	3	RO	16

NCC

Results - by-products

Up Probes for prefix_v6: $2001: 6 f 8:: / 32$

NCC

Next step: "User Defined Measurements"

Next step: "User Defined Measurements"

This is all fine:

1000206 - Ping to $46.30 .25 .101(46.30 .25 .101)$

Next step: "User Defined Measurements"

This is not so fine:

1000043 - Ping to ns4.he.net from Area:Ww
2ownload results in CSV

Data sharing

- We intend to share all this data with the community
- Caveat: some data protection / privacy concerns
- We'll also document APIs that we build:
- To get access to the data
- To get access to some metadata
- To be able to control your measurements

Questions?

