

ICN Content Security Using Encrypted Manifest and Encrypted
Content Chunks

Dante Pacella
Verizon Labs

dante@verizon.com

Mani Tadayon
Verizon Labs

mani.tadayon@verizon.com

Ashish Sardesai
Verizon Labs

ashish.sardesai@verizon.com

Venkat Josyula
Verizon Labs

venkat.josyula@verizon.com

Copyright 2017 Verizon, all rights reserved.

Abstract
ICN defines a new paradigm for networking recognizing
the fact that modern communication is primarily focused
around retrieving objects via the network. ICN allows an
end host to ask the network for a named object and receive
it from any source while being able to trust the content
authenticity regardless of the source. This is a very
powerful feature and is made possible by content
signatures. This feature enables ubiquitous/opportunistic
caching of the content throughout the network.

Traditional content distribution networks require an
abstraction layer that resides above the network to
facilitate optimizations in content delivery. In many cases,
content producers require multiple CDNs to deliver
content, each with their own independent abstraction layer.
These abstraction layers move traffic without direct
knowledge of the underlying network and can enact traffic
distribution policies that are orthogonal to the underlying
network. The decision to cache content and the decision to
deliver content is entirely managed within the closed
ecosystem of each CDN, as contractually guided by the
content producer.

This ubiquitous/opportunistic caching ability within ICN
in turn means that content is available throughout the
network and when any consumer of content (hence for
referred to as consumer) issues an Interest for content it
receives the content from the nearest network node which
has the content in cache. This poses a challenge for any
content owner interested in maintaining control over
distribution of the content specifically in areas of
authentication, authorization, and usage analytics.

This is a proposal for solving aforementioned issues by the
content owner generating encrypted content, encrypted
manifest per consumer, and modifying the Namespace in
initial Interest message for identification, authentication,
and authorization.

Keywords

Information Centric Networking, Longest Match, Named
Data Networking, Content Security, Chunk Groups,
Nameless Objects, User Identifier, Encrypted Manifest,
Scalability

1. Background
The creative design of ICN as a protocol for information /
content distribution, solves the problem of content
authenticity regardless of location from which the content
is obtained. While this feature of ICN makes it very
powerful for content distribution, it also introduces
challenges for maintaining control over authorized access
to content. If a consumer obtains the name of the content
(or chunks that collectively constitute the content), this
name can be used to retrieve the content for future
playback, or if shared, even used by other consumers to
retrieve the content. This means that content owners lose
control of the distribution of their content.

 2

2. Design

2.1 Chunking
For optimal utilization of network and storage resources,
the first step in preparing large scale content for
distribution is to chunk the content into smaller pieces. The
chunk size is determined by content-type, receiving
application, and delivery environment.

There are multiple methods of naming a Content Chunk:

• Name structure derived from a predetermined
schema

• Name structure based on computed hash of a
content chunk which results in a Nameless Object

With the first option chunk names can easily be inferred
and thereby the schema lowers privacy and security, hence
we propose using the second option i.e., Nameless Objects.

2.2 Encryption
Once content has been divided into chunks, the chunks are
encrypted using unique key per chunk. This approach
results in proliferation of keys and key management
overhead. In order to simplify key management and
optimize content distribution, we propose using Chunk
Groups and encrypting all chunks in each group with a
single group key.

To further enhance owner's control over the content we
propose using encryption keys with limited validity period.
The expiration of encryption keys triggers regeneration of
the encrypted chunks with the new key(s) and invalidates
the existing cache entries in the network. The key validity
period per content can be gauged based on a trade-off
between cache lifetime and bandwidth or performance of
the network, with compute impact to key generation as a
function of overall asset catalog size factored.

Key regeneration would most likely occur wherever
content encryption occurs. Each asset would likely be
processed from a single location, though the processing of
a catalog can be distributed between assets. Each key can
be associated with a portion of an overall catalog.
Regeneration events can be staggered such that only a
portion of a catalog is processed at a given time interval.
These processing event windows can be constructed in
rolling windows so that a catalog is continually having
keys regenerated and refreshed.

2.3 Manifest Generation
A Manifest is generated associated with the name of each
Content.

The Manifest is created as one or more Manifest Objects
that each contain information associated with a Chunk
Group and a link to the next Manifest Object (except in the
last Manifest Object in the chain). Currently each Manifest
Object has a locator associated with a Chunk Group and a
list of corresponding Nameless Content Objects. Each
Nameless Content Object reference is derived from the
hash of that Chunk.

This method proposes including encryption credentials/
keys associated with each Chunk Group in the Manifest
Object along with the locator and each Nameless Content
Object reference being derived from the hash of that
encrypted Chunk as depicted below.

+
| + +--
----------------+
| | Locator: Name of the Chunk Group
| | Key: <Encryption Credentials associated with
Chunk Group>
| | +
| | | { Hash(Encr[Chunk1]) }
| | | { Hash(Encr[Chunk2]) }
| | | { Hash(Encr[Chunk3]) }
| | | { Hash(Encr[Chunk4]) }
| | | { Hash(Encr[Chunk5]) }
| | | { Hash(Encr[Chunk6]) }
| | | { Hash(Encr[......]) }
| | +
| |
| + +--
----------------+
|
| + +--
----------------+
| | Locator: Name of the Next Manifest Object
| |
| | +
| | | { Hash(Next Manifest Object Pointer) }
| | +
| |
+ + +--
---------------+
 Figure 1: Manifest with keys

2.4 Delivery
Existing ICN mechanisms provide for consumers
requesting content by issuing an Interest message. In
response to the interest, producer retrieves the manifest for
that content, encrypts it using the requesting consumer's
public key, and responds with encrypted manifest. On
reception of encrypted manifest, the consumer uses the
corresponding private key to decrypt the manifest and
issues requests (Interest messages) for content chunks as
per the manifest. Interests for content chunks are satisfied
by the nearest node that has the content chunk available.
The consumer uses chunk group key listed in the manifest
to decrypt associated chunks.

 3

2.5 Initial Interest Forwarding
By default Interest messages requesting a specific content
are identical for different users. This allows for Interest
aggregation but it prevents the producer from receiving per
consumer Interest messages resulting in inability to
authenticate and authorize access to content on a per
consumer basis. To provide these controls to producers,
two potential solutions were considered:

• Adding an indicator (such as a ""DO NOT
AGGREGATE" flag) in the Interest message to
prevent Interest aggregation on intermediate
nodes.

• Modifying the Namespace of Interest messages
requesting a specific content by inserting a
consumer Identifier to make the Interest unique
and prevent Interest aggregation

For the first option to work, in addition to the indicator, a
consumer identifier would also need to be passed within
the Interest message. Intermediate nodes would then be
required to implement special processing to achieve
uniqueness per PIT entry, as namespaces would be
identical.

In case of the second option, Namespace modification
provides the producer with consumer identification and
makes the Namespace unique without requiring
intermediate nodes to implement special processing to
achieve uniqueness per PIT entry.

Namespace modification approach is selected as it is the
better of the two options for achieving uniqueness per
Interest and PIT entry, due to its minimal impact on
intermediate nodes.

An example of the modified namespace structure is
depicted in the figure below:

 /<content_namespace>/<content_name>/ID=<c

onsumer_identifier>

Performance and scaling impacts of implementing this
proposal on PIT and FIB tables were analyzed.

In case of PIT, the entries are transitory in nature;
therefore, having unique interests for content per consumer
is not an issue of scale. Once the unique Interest is
satisfied, the PIT entry related to the modified namespace
is purged.

In case of FIB, support for longest match is required as
without it, there is a large increase in FIB entries (<number
of items in content catalogue> X <number of service
subscribers)>. Longest match allows for a much more
efficient FIB size.

The section below illustrates the proposal using an
example.
consumer1234
 +
 |
 | +---------------+
 | | |
 | | |
 +--------------+ | |
 | |FIB: Next Node
 | NODE1 |+------------>
 | |
 +--------------+ | |
 | | |
 | | |
 | +---------------+
 |
 +
consumer5678
Figure 2: Leaf node with two consumers attached

Example base structure of namespace modification for
Interest messages from different consumers making
concurrent requests for same content.

 /foo/bar/content1/ID=consumer1234

 /foo/bar/content1/ID=consumer5678

Figure 3: Interest and Content Flow

In its simplest form, Namespace modification could be
achieved by adding a consumer_ID or the value of the
public key of the consumer to the content name. However,
in order to obfuscate subsequent consumer requests from
intermediate nodes such that the transit carrier cannot
perform usage tracking, we propose using a nonce to
randomize this field. The Namespace modification takes
the form of a consumer_ID plus nonce encrypted with the
public key of the producer/provider.

Note: synchronizing the randomization scheme between
producer and consumer is outside of the scope of this
proposal.

 4

Example structure of namespace modification for Interest
messages from different consumers for the same content.

 /foo/bar/content1/ID=dfdec888b72151965a34

b4b59031290 --encrypt(<random> + consumer1234)

 /foo/bar/content1/ID=21596697d99734b8ac40

4c4baa3988a --encrypt(<random> + consumer5678)

Example structure of namespace modification for Interest
messages from same consumer for any content.

 /foo/bar/content1/ID=22f65b72888151965a90

3129034b1b5 --encrypt(<random> + consumer1234)

 /foo/bar/content2/ID=855c3697d9979e78ac40

4c4ba2c6653 --encrypt(<random> + consumer1234)

Transit forwarding nodes use longest match against FIB
entries to forward the interest towards the
producer/provider

2.6 Manifest Delivery
At the producer/provider node, the consumer identifier is
extracted from the Namespace and is matched with the
provisioned data associated with that consumer. Upon
successful match, the Manifest associated with the
requested content is sent to the consumer.

As this Manifest contains encryptions keys, we propose a
uniquely encrypted Manifest for each consumer using their
public key to prevent unauthorized access to encryption
keys in the manifest. This enables producers to maintain
control over distribution of the content as well as discrete
security per consumer. Any producer participating in the
generation of encrypted Manifests for the same consumer
community must have access to the consumer provisioned
data to aid in Authentication, Authorization and gathering
Usage Analytics.

Note: exchanging consumer's public key is assumed to be
a part of initial service setup and is outside of the scope of
this proposal.

Only the consumer that has the paired private key can
decrypt this encrypted Manifest.

In Figure 1, Consumer1234’s Manifest can only be
decrypted with its private key. Consumer1234’s Interest
and Consumer5678’s Interest must each have separate PIT
entries, so that the unique Manifests are delivered to their
respective clients.

Normally, Manifests are cacheable, just like any other
Object, however due to the unique Manifest Namespace,
each node in the path will not overwrite the Manifest in
cache when the node receives the next request for the same
content, as a result, caching of the Manifest has validity

only to recover from data loss for the original requesting
consumer (i.e., if Consumer1234 does not receive the
manifest because of data corruption or momentary loss of
connectivity).

Due to this per consumer encryption, Manifests are single
use and not cache worthy for intermediate nodes.

2.7 Content Delivery
After receiving the encrypted Manifest, the Consumer
decrypts the Manifest with its Private Key.

The Consumer uses locator and nameless reference within
decrypted Manifest to form the Interest to retrieve the
content chunk. Any intermediate node along the Interest
forwarding path that contains the chunk may satisfy the
Interest. If none of the intermediate node caches contain
the chunk, the producer satisfies the Interest. Cache fill
operations can occur on any intermediate nodes at this
stage.

Once the consumer obtains the chunk, the corresponding
Chunk Group Credentials/Key is used to decrypt the
corresponding chunk. Each piece of content can have
multiple Chunk Groups and Keys associated with the
content, as previously described.

While the Manifest is encrypted such that it becomes
unique per consumer, content chunks associated with a
given content are identical for a consumer community.
Interest messages by multiple consumers from a consumer
community for a given chunk are identical, allowing
ubiquitous/opportunistic caching of the chunks. As this
represents a majority of the byte count being transferred
between cache and consumer, with Manifest being an
incidental portion, bandwidth savings is still achieved in
this proposed model.

3 Usage Analytics
This proposal allows producers to have access to consumer
identification and, hence, enables another source for
collection of data on consumer usage patterns and generate
analytics that facilitates producers to enact appropriate
subscription-based revenue-generating models. This
proposal also prevents profiling of individual consumers
by intermediate nodes unassociated with the producer or
consumer.

4 Summary
ICN Content Security provides a scalable and distributed
method for content access controls while still maintaining
the maximal amount of ICN paradigm. With every chunk
being uniform, all chunks can be cached ubiquitously. The

 5

chunks represent the majority of data transmitted under
this method; therefore, ICN's objective of bandwidth
savings is still achieved.

By using the modified namespace to insert a consumer
identifier, this method guarantees uniqueness for the
Manifest Interest, allowing for discrete controls and usage
analytics. Because the majority of Interests are generated
for retrieving uniform chunks, these Interests are
aggregated in the PIT. Longest prefix match results in
efficient and manageable FIB sizes across the network.

5 References
[CCN] PARC, Inc., "CCNx Open Source", 2007,
<http://www.CCNx.org>.

[CCN] Jacobson, V., et al., "Networking Named Content",
Proc. CoNEXT, ACM, 2009.

[CCNx] Mosko, M., Solis, I., and E. Uzun, "CCN 1.0
Protocol Architecture", Project CCNx documentation,
Xerox Palo Alto Research Center, 2013,
<http://ccnx.org/pubs/ICN_CCN_Protocols.pdf>.

[CCNMessages] Mosko, M., Solis, I., and M. Stapp,
"CCNx Messages in TLV Format (Internet draft)", 2015,
<http://tools.ietf.org/html/draft-mosko-icnrg-
ccnxmessages-00>.

[CCNTlv] Mosko, M. and I. Solis, "CCNx Messages in
TLV Format (Internet draft)", 2015.

[FLIC] Tschudin, C. , Wood, C., "File-Like ICN
Collection (FLIC)", 2016,
<https://www.ietf.org/archive/id/draft-tschudin-icnrg-flic-
01.txt>.

6 Acknowledgements
We thank Jean McManus, Verizon Labs Executive
Director, for comments that greatly improved this paper.

