

Adaptive Caching Algorithms with Optimality Guarantees for NDN Networks

Stratis Ioannidis and Edmund Yeh

Nodes in the network store **content items** (e.g., files, file chunks)

Nodes generate **requests** for content items

Requests are routed towards a content source

Responses routed over reverse path

Nodes have **caches** with finite capacities

Nodes have **caches** with finite capacities

Requests terminate early upon a cache hit

Example: Named Data Networks

Optimal Content Allocation

Q: How should items be allocated to caches so that **routing costs are minimized**?

Optimal Content Allocation

Challenge: Caching algorithm should be
adaptive, and
distributed.

A Simple Algorithm: Path-Replication

Cache item on every node in the reverse path
 Evict using a simple policy, e.g., LRU, LFU, FIFO etc.

Path Replication combined with traditional eviction policies (LRU, LFU, FIFO, etc.) is **arbitrarily suboptimal.**

Path Replication + LRU is Arbitrarily Suboptimal

Cost when caching 📄 :

 $0.5\times1+0.5\times2=\mathbf{1.5}$

Cost of PR+LRU: $0.25 \times (M + 1) + 0.25 \times 1 +$

 $+0.25 \times 2 + 0.25 \times 1 = 0.25M + 1.25$

- When M is large, PR+LRU is arbitrarily suboptimal!
- True for any strategy (LRU,LFU,FIFO,RR) that ignores upstream costs

Our Contributions

Formal statement of offline problem
 NP-Hard [Shanmugam et al. IT 2013]

□ Path Replication +LRU, LFU, FIFO, etc. is arbitrarily suboptimal

Distributed, adaptive algorithm, within a constant approximation from optimal offline allocation

Path Replication+novel eviction policy
 Great performance under 20+ network topologies

Problem Formulation

Distributed Adaptive Algorithms

Evaluation

Problem Formulation

Distributed Adaptive Algorithms

Model: Network

G(V, E)

Network represented as a **directed**, **bi-directional** graph G(V, E)

Model: Edge Costs

G(V, E) Edge costs: $w_{uv}, (u, v) \in E$

Each edge $(u, v) \in E$ has a **cost/weight** w_{uv}

Model: Node Caches

Node $v \in V$ has a cache with capacity $c_v \in \mathbb{N}$

Model: Cache Contents

Items stored and requested form the item catalog ${\cal C}$

Model: Cache Contents

Model: Designated Sources

For each and $i \in C$, there exists a set of nodes $S_i \subset V$ (the **designated sources** of *i*) that **permanently store** *i*.

I.e., if $v \in S_i$ then $x_{vi} = 1$

Model: Demand

A **request** is a pair (i, p) such that:

satisfied!

 $\Box p = \{p_1, \ldots, p_K\}$ is a simple path in G such that $p_K \in S_i$.

Model: Demand

Demand \mathcal{R} : set of all requests (i, p)

Request arrival process is Poisson with rate $\lambda_{(i,p)}$

Model: Routing Costs & Caching Gain

Model: Routing Costs & Caching Gain

Model: Routing Costs & Caching Gain

Caching Gain Maximization

Edge costs: $w_{uv}, (u, v) \in E$ Node capacities: $c_v, v \in V$ $\sum_{i \in C} x_{vi} \leq c_v$, for all $v \in V$ Request rates: $\lambda_{(i,p)}, (i,p) \in \mathcal{R}$ Caching Gain: $\sum_{k=1}^{|p|-1} w_{p_{k+1}p_k} (1 - \prod_{k'=1}^k (1 - x_{p_{k'i}}))$

The global allocation strategy is the binary $|V| imes |\mathcal{C}|$ matrix

 $X = [x_{vi}]_{v \in V, i \in \mathcal{C}}$

Caching Gain Maximization

Offline Problem

Maximize:

$$F(X) = \sum_{(i,p)\in\mathcal{R}} \lambda_{(i,p)} \sum_{k=1}^{|p|-1} w_{p_{k+1}p_k} \left(1 - \prod_{k'=1}^k (1 - x_{p_{k'i}}) \right)$$

Subject to:

$$\begin{split} \sum_{i \in \mathcal{C}} x_{vi} &= c_v, & \text{for all } v \in V \\ x_{vi} &= 1, & \text{for all } i \in \mathcal{C} \text{ and } v \in S_i \\ x_{vi} &\in \{0, 1\}, & \text{for all } v \in V \text{ and } i \in \mathcal{C} \end{split}$$

Shanmugam, Golrezaei, Dimakis, Molisch, and Caire. *Femtocaching: Wireless Content Delivery Through Distributed Caching Helpers*. IT, 2013

- NP-hard
- □ Submodular objective, matroid constraints
 - □ Greedy algorithm gives ½-approximation ratio
- 1-1/e ratio can be achieved through pipage rounding method [Ageev and Sviridenko, J. of Comb. Opt., 2004]

Maximize:

$$F(X) = \sum_{(i,p)\in\mathcal{R}} \lambda_{(i,p)} \sum_{k=1}^{|p|-1} w_{p_{k+1}p_k} \left(1 - \prod_{k'=1}^k (1 - x_{p_{k'i}}) \right)$$
$$\sum x_{vi} = c_{v}, \qquad \text{for all } v \in V$$

Subject to:

$$\begin{split} \sum_{i \in \mathcal{C}} x_{vi} &= c_v, & \text{for all } v \in V \\ x_{vi} &= 1, & \text{for all } i \in \mathcal{C} \text{ and } v \in S_i \\ x_{vi} &\in \{0, 1\}, & \text{for all } v \in V \text{ and } i \in \mathcal{C} \end{split}$$

$$\begin{array}{ll} \text{Maximize:} & F(Y) = \sum_{(i,p) \in \mathcal{R}} \lambda_{(i,p)} \sum_{k=1}^{|p|-1} w_{p_{k+1}p_k} \left(1 - \prod_{k'=1}^k (1 - y_{p_{k'i}}) \right) \\ \text{Subject to:} & \sum_{i \in \mathcal{C}} y_{vi} = c_v, & \text{for all } v \in V \\ & y_{vi} = 1, & \text{for all } i \in \mathcal{C} \text{ and } v \in S_i \\ \text{Satisfied in expectation} & y_{vi} \in [0,1], & \text{for all } v \in V \text{ and } i \in \mathcal{C} \end{array}$$

Think:

$$y_{vi} = P(x_{vi} = 1)$$

 \Box All x_{vi} are independent Bernoulli random variables.

Maximiz

$$\begin{split} \text{Maximize:} \quad F(Y) &= \sum_{(i,p) \in \mathcal{R}} \lambda_{(i,p)} \sum_{k=1}^{|p|-1} w_{p_{k+1}p_k} \left(1 - \prod_{k'=1}^k (1 - y_{p_{k'i}}) \right) \\ \text{Subject to:} \quad \sum_{\substack{i \in \mathcal{C} \\ y_{vi}} = 1, \\ y_{vi} \in [1,]} \quad \text{for all } v \in V \\ \text{for all } i \in \mathcal{C} \quad \text{and } v \in S_i \\ y_{vi} \in [0,1] \quad , \\ \end{split}$$

Key idea: There exists a **concave** function L(Y) such that $(1 - \frac{1}{2})L(Y) \le F(Y) \le L(Y)$

33 Adaptive Caching Networks w. Optimality Guarantees

1

Maximize:

$$L(Y) = \sum_{(i,p)\in\mathcal{R}} \lambda_{(i,p)} \sum_{k=1}^{|p|-1} w_{p_{k+1}p_k} \min\{1, \sum_{k'=1}^{k} y_{p'_k i}\}$$

Subject to:

$$\begin{split} \sum_{i \in \mathcal{C}} y_{vi} &= c_v, & \text{for all } v \in V \\ y_{vi} &= 1, & \text{for all } i \in \mathcal{C} \text{ and } v \in S_i \\ y_{vi} &\in [0, 1] \text{ , } & \text{for all } v \in V \text{ and } i \in \mathcal{C} \end{split}$$

 $\hfill\square$ Key idea: There exists a concave function L(Y) such that

$$(1 - \frac{1}{e})L(Y) \le F(Y) \le L(Y)$$

 \Box Algorithm Sketch: Maximize L(Y); round solution to obtain discrete solution X.

Problem Formulation

Distributed Adaptive Algorithms

Time is divided into slots

$$\mathcal{C} = \left\{ \bigsqcup \bigsqcup \bigsqcup \right\} \quad Y = [y_v]_{v \in V}$$

Each node $v \in V$ keeps track of its own marginal distribution $y_v \in [0,1]^{|\mathcal{C}|}$

During a slot, v estimates $\nabla_{y_v} L(Y)$ by collecting measurements through passing packets.

At the conclusion of the k-th slot, v updates its marginals through:

$$y_v \leftarrow \Pi_{D_v}(y_v + \gamma_k \nabla_{y_v} L(Y))$$

After updating y_v , node v places c_v random items in its cache, independently of other nodes, so that:

$$P(x_{vi}=1)=y_{vi}$$
 , for all $\,i\in\mathcal{C}$

How can v estimate $\nabla_{y_v} L(Y)$ in a distributed fashion?

When request (i, p) is generated, create a new **control message**

Forward control message over path \boldsymbol{p} until:

$$\sum_{k'=1}^k y_{p_{k'}i} > 1$$

Send control message over reverse path, collecting sum of edge costs.

Each node on reverse path, sniffs upstream costs, and maintains average per item $i \in C$.

Average at end of slot is estimate of $\frac{\partial L(Y)}{\partial u_{vi}}$

Randomized Placement

How can v place **exactly** c_v items in its cache, so that marginals are satisfied?

Randomized Placement

Suppose that I give you a $y_v \in [0,1]^{|\mathcal{C}|}$ such that $\sum_{i \in \mathcal{C}} y_{vi} = c_v$.

Is there a way to select exactly c_v items at random, so that the probability that item i is selected is y_{vi} ?

Randomized Placement: Sketch of Algorithm

Theorem: For $\gamma_k = 1/\sqrt{k}$, Projected Gradient Ascent leads to an allocation X_k such that

$$\lim_{k \to \infty} \mathbb{E}[F(X_k)] \ge (1 - \frac{1}{e})F(X^*)$$

where X^* an optimal solution to the offline problem.

Projected Gradient Ascent (vs. Path Replication)

- ✓ Distributed
- ✓ Adaptive
- ✓ Constant Approximation to Optimal
- X Overhead for control traffic
- old X Overhead to retrieve content at end of timeslot
- X Not so simple...

Path-Replication + Greedy Eviction Policy

 \Box Each node v maintains an estimate for the (sub)gradient $\partial y_v L(X)$

 \Box At any point in time, v caches "top" c_v items, with highest gradients $\frac{\partial L(X)}{\partial y_{vi}}$

Path-Replication + Greedy Eviction

□ A response carrying the item *i* adds weights on the reverse path, and reports them to intermediate nodes.

Weights are used to update estimate of

$$rac{\partial L(X)}{\partial y_{vi}}$$
 .

□ Greedy Eviction: if *i* becomes one of the top c_v items, evict item with smallest gradient, and cache *i*.

Problem Formulation

Distributed Algorithms

Evaluation

Multiple Topologies

y-axis: ratio to offline solution

□ Joint caching & routing

□PR+Greedy Eviction guarantees

Delay vs. Throughput Optimality

□ Broader resource management applications

S. Ioannidis and E. Yeh, "Adaptive Caching Networks with Optimality Guarantees." Proc. ACM SIGMETRICS, Antibes Juan-les-Pins, June 14-18, 2016, pp. 113-124.

Thank you!