How to Establish Loop-Free Multipath Routes in Named Data Networking?

NDNcomm 2017

Klaus Schneider, Beichuan Zhang March 24, 2017

The University of Arizona

Routing and Forwarding in IP Networks

No Loop Detection on Forwarding Plane

- Very high cost (packets loop through same routers until TTL runs out)
- $\Rightarrow\,$ Routing has to be perfectly <code>loop-free</code>

Routing and Forwarding in IP Networks

No Loop Detection on Forwarding Plane

- Very high cost (packets loop through same routers until TTL runs out)
- $\Rightarrow\,$ Routing has to be perfectly loop-free

Routing and Forwarding in IP Networks

No Loop Detection on Forwarding Plane

- Very high cost (packets loop through same routers until TTL runs out)
- \Rightarrow Routing has to be perfectly **loop-free**

NDN: Detect & handle loops via nonce!

Great benefits of using multiple paths at the same time!

- Load Balancing
- Gradual shifting of traffic during congestion [1, 2]
- Exploiting differences in cost and performance of paths (WiFi vs. LTE) [3]

Great benefits of using multiple paths at the same time!

- Load Balancing
- Gradual shifting of traffic during congestion [1, 2]
- Exploiting differences in cost and performance of paths (WiFi vs. LTE) [3]

Traffic Splitting requires Loop-Freeness and Path Choice

NLSR: High Path Choice, but many Loops

Loop-Free Routing: Limited Path Choice

Incoming Interface-Exclusion: Higher Path Choice

Via Routing? Too complex!

- 1. Trad: Undirected graph \Rightarrow Directed Acyclic Graph (DAG)
- Now: ⇒ Directed graph without cycles longer than one hop!

Via Routing? Too complex!

- 1. Trad: Undirected graph \Rightarrow Directed Acyclic Graph (DAG)
- Now: ⇒ Directed graph without cycles longer than one hop!

Solution:

- 1. Almost Loop-free Routing (ALR)
- 2. On-demand Loop Removal at forwarding layer

Give each nexthop in FIB a Type: { Downward, Upward, Disabled }.

- 1. Fill FIB with Downward Nexthops
- 2. If prefix still has only one nexthop:
 - Go through all disabled nexthops:
 - If NH passes **Heuristic Loop Checks**: Add as Uphill; break;

Give each nexthop in FIB a Type: { Downward, Upward, Disabled }.

- 1. Fill FIB with Downward Nexthops
- 2. If prefix still has only one nexthop:
 - Go through all disabled nexthops:
 - If NH passes **Heuristic Loop Checks**: Add as Uphill; break;

 \Rightarrow Much more nodes with at least 2 nexthops, and low looping chance.

Forwarding loop: Uphill Nexthop Removal (UNR)

Results of 8 other routing protocols in 9 topologies:

- ALR: Low computational complexity, similar to NLSR.
- UNR: Very low forwarding complexity (only 0.4% to 1.6% of FIB entries need to be changed)

Together: Completely loop-free network with **higher path choice** than loop-free routing for all tested topologies.

How to Establish Loop-Free Multipath Routes in NDN?

• Loop-free routing vs. Loop handling at Forw. Layer

How to Establish Loop-Free Multipath Routes in NDN?

• Loop-free routing vs. Loop handling at Forw. Layer

Traffic Splitting needs Loop-freeness and high Path Choice

- Loop-free routing provides former, but not latter.
- Current NDN routing vice versa.
- ⇒ Achieving both by combining Almost-Loopfree Routing with Loop-removal at the forwarding layer.

How to Establish Loop-Free Multipath Routes in NDN?

• Loop-free routing vs. Loop handling at Forw. Layer

Traffic Splitting needs Loop-freeness and high Path Choice

- Loop-free routing provides former, but not latter.
- Current NDN routing vice versa.
- ⇒ Achieving both by combining Almost-Loopfree Routing with Loop-removal at the forwarding layer.

Future Work:

• Tech Report coming soon!

Thank you for your attention!

Questions?

Klaus Schneider klaus@cs.arizona.edu

 Giovanna Carofiglio, Massimo Gallo, Luca Muscariello, Michele Papalini, and Sen Wang.
Optimal multipath congestion control and request forwarding in information-centric networks.

In ICNP, 2013.

- [2] Klaus Schneider, Cheng Yi, Beichuan Zhang, and Lixia Zhang. A practical congestion control scheme for named data networking. In Proceedings of ICN 2016, pages 21–30. ACM, 2016.
- Klaus M Schneider and Udo R Krieger. Beyond network selection: Exploiting access network heterogeneity with named data networking.

In Proceedings of the 2nd International Conference on Information-Centric Networking, pages 137–146. ACM, 2015.