Automated Application Signatur e Generation for Traffic Identification

> Young J. Won, Seong-Chul Hong, Byung-Chul Park, and James W. Hong

Distributed Processing and Network Management Lab. Dept. of Computer Science and Engineering POSTECH, Korea {yjwon, jwkhong}@postech.ac.kr

Aug. 16, 2008

Introduction on DPNM, POSTECH

Our Experience on Measurement

*****Automated Signature Generation

Conclusion

DPNM, POSTECH

POSTECH Since 1986

- Founded by POSCO 2nd largest iron and steel manufact urer in the world
 - 3000 students, 230 faculty members, 800 researchers
- Distributed Processing and Network Management Lab. (<u>ht</u> <u>tp://dpnm.postech.ac.kr</u>) since 1995
 - 6 PhD students, 3 MS students, 1 researcher as of 2008

DPNM, POSTECH

Recent Industry Projects

Projects Regarding Traffic Measurement & Analysis Only

Korea Telecom (KT)

- BGP threats & ISP relations (2008~)
- Bundled service traffic analysis (2007)
- Application-level traffic classification (2006)
- High-speed network monitoring system (2005)

POSCO

- Industrial control networks fault detection & prediction (2008~)
- Remote monitoring & fault analysis in industrial control network n etworks (2007)

Government

- CASFI (2008)
- High-speed traffic monitoring & audit systems (2004~2005)

Others

nTelia – Traffic analysis of mobile data networks (2006)

POSTECH's Experiences in Traffic Measurement & Analysis

- Traffic Monitoring Systems
- Enterprise Networks
- Mobile Data Networks
- Industrial Control Networks
- IPTV Traffic

Traffic Monitoring Systems

*** MRTG+ (1997)**

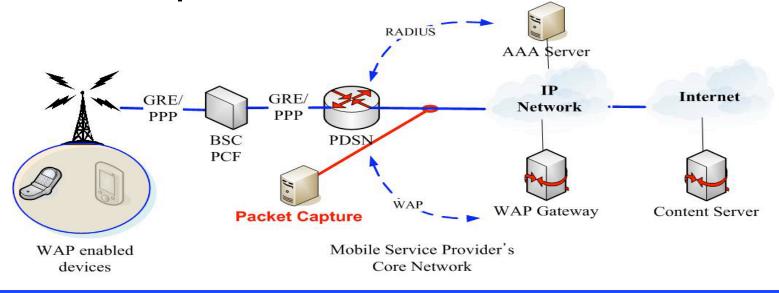
- Extension of MRTG, LIVE visualization of traffic
- * WebTrafMon-I & II (1998, 2000)
 - Passive traffic monitoring system (up to 100 Mbps)
 - Distributed architecture

*** NGMON (2002~)**

- Next Generation Network MONitoring and Analysis Sy stem
- Targeting 1-10 Gbps or higher networks
- Traffic classification, security attack detection & host analysis

Enterprise Networks

Campus Networks


- Characteristics analysis of Internet traffic from the perspective of flows [ComCom '06]
- Application-level traffic monitoring & analysis [ETRI '05]
- Korea Internet eXchange (2004)
- Participating DITL packet collection (2007, 2008)

Analysis Categories

- Flow size / duration / packet distribution / size distribution / f lash flows / volume pattern / flow occurrence period / port n umber distribution and more
- Flow & Packet-based analysis
- Focusing on traffic classification & its applications

Mobile Data Networks

- Investigating the unique and unusual traffic charac teristics reflecting the user and data service patter ns [PAM '07]
 - Previous works are limited to small scale measuremen t study between the selected end hosts
 - They focused on TCP or performance factors rather th an understanding the user behavior and the root caus e for such phenomenon

DPNM, POSTECH

Industrial Control Networks

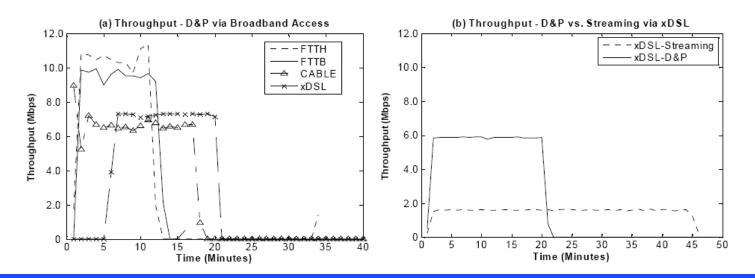
Industrial Control Networks (ICN)?

- Robust communications between controlling and controlled devices in a manufacturing environment
 - Building, Factory, and Process Automation
- Mission critical process & Non-fault tolerable networks
- Emergence of Industrial Ethernet → Ethernet/IP-based
 - EtherNet/IP, PROFINET, TCnet, Vnet/IP, EPA, RAPIEnet
- Real-world ICN test bed: POSCO

Problems?

- The cost of network malfunctioning is severe.
- ICN fault diagnosis techniques require different standards.
 - due to differences of traffic nature

Papers


- Traffic characteristics [APNOMS '07]
- Fault detection and analysis system [C]

IPTV Traffic

- Investigation of combinational traffic models for TPS components
 - Bandwidth demand models, Traffic impact analysis
- Commercial IPTV traffic measurements [ComMag '08]
 - End-user IPTV traffic measurements of residential broadband a ccess networks
 - IPTV STB over ADSL, Cable, FTTB, and FTTH

DPNM, POSTECH

Automated Signature Generation for Traff ic Identification

DPNM, POSTECH

CAIDA-WIDE-CASFI Workshop

11/24

Traffic Classification

Classification has been done based on: [Sz abo '08]

- Port
- Signature
- Connection pattern
- Statistics
- Information theory
- Combined classification method

Signature-based method often is used as ground truth for validation

• We focus on obtaining accurate signatures

Motivation

- Desire for obtaining accurate, non-bias, and less time-con suming signatures
 - No systematic approach for signature extraction
 - Avoiding tedious and exhaustive search for signatures
 - Dealing with thousands of applications (e.g., P2P)

Validation requirements

- Cross validation with classification algorithms themselves
- Relying on signature eventually for ground truth

No concrete set of signatures

- Proposing a sharing data set for signature list
- Industry: Ipoque, Sandvine, Procera, and etc.

An extra question in mind

• What about encrypted traffic applications?

Related Work

POSTECH's work on classification

- Flow Relationship Mapping (FRM) [M.Kim, '04]
- Hybrid approach between flow relations and signature matching [Won '06]
- ML-based attempts papers in Korean

***** P2P traffic identification using signature

- Packet inspection [Gummandi '03, Karagiannis '04]
- Protocol analysis [Sen '04]
 - Accurate but only for open protocols

Automated worm signature generation [Kim '04, Singh '04, Singh '05]

Sliding-window algorithms [Scheirer '05]

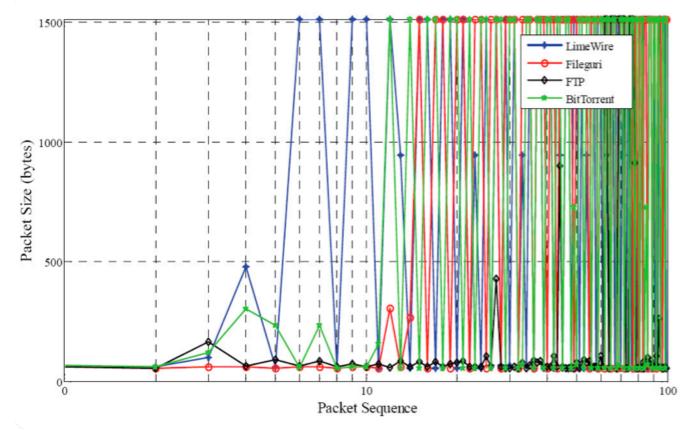
LASER

- *We proposed a LCS-based Application Signature ExtRaction technique - LASE R [NOMS '08]
 - Longest Common Subsequence algorithm [Cormen '01]
 - Avoiding exhaustive search for signatures
 - Extracting candidate signature for later an alysis

Constraints of LASER (1/2)

Number of packets per flow

- A concrete signature exists in the initial few packets of the fl ow [Sen '04]
- Tentative packet grouping


Minimum substring length

- Signature is simply a sequence of substrings
- Length of substring reflect the significance as a signature
- To avoid trivial signatures
 - e.g. '/' in HTTP protocol

Packet size

- Size differs due to purpose of the packets (signaling or download)
- Packet size in a close range infers higher chance for valid si gnatures

Constraints of LASER (2/2)

Example: LimeWire

- Signaling avg. 390bytes, Downloading 1460bytes
- Avoiding unnecessary packet comparisons
- Reducing garbage characters from the generated signature

LASER Pseudocode

I: procoduro Signature_Generation ()	19: p
2: Flow_Pool {F ₁ []Fx[]} ← Sanitized_packet_collector	20:
 F_I ← Iterate, packet dump for Flow I 	21:
 F₂ ← Iterate, packet dump for Flow 2 	22:
while i from 0 to #_packet_constraint do	23:
while j from 0 to #_packet_constraint do	24:
 if F₁[i].packet_size - F₂[j].packet_size < threshold 	25:
8: result_LCS ← LASER (Fi[i], F2[j])	26:
9: LCS_Pool {} ← Append result_LCS, ond if	27:
10: j++, end while	28:
II: i++, end while	29:
12: S ← select the longest from LCS_Pool	30:
13: while i from 0 to number of rest flows of Flow_Pool do	31:
14: Fi ← select one from the rest of Flow_Pool	32:
15: result_LCS ← LASER (S, Fi)	33:
16: S ← select the longest from result_LCS	34: 35:
 i++, end while, ond while 	36:
18: return S	30.
	37.
	30.
	40:
	40. 41:
	42:
	43:
	44· P

- 19: procedure LASER (PacketA[1...m], PacketB[1...n])
- 20: Packet_A [m...1] ← Reverse byte stream
- 21: Packet_B [n...1] ← Reverse byte stream
- 22: Matrix [m][n]
- 23: while i from 0 to m do
- 24: while j from 0 n do
- 25: if i = 0 or j = 0, then Matrix [i][j] ← 0
- 26: else if Packet_A [i] = Packet_B [j], then
 - : Matrix [i][j] ← 'Diagonal'
- 28: else if Matrix[i][j] != p[i][j-1], then
- 9: Matrix[i][j] ← 'Up'
- 30: else Matrix[i][j] ← 'Left', end while
- 31: end while
- 32: i← m-1;j← n-1 //Tracking
- 33: while Matrix[i][j] != 0 do
- 34: If Matrix[i][j] = 'Left', then j--
- 35: else if Matrix[i][j] = 'Up', then i--
- 6: else if Matrix[i][j] = 'Diagonal', then do
- 37: Substring ← Append Packet_A[i]
- 38: If Matrix[i-1][j-1] != 'Diagonal', then
- Substring ← Append special break point character (e.g. //)
- 40: i--; j--, end while
- 41: while tokenizing substring based on break point do
- 42: If token_length > minimum_substring_length_constraint
- 43: then, result_LCS ← Append token_substring, end while

44: return result_LCS

Applying Constraints

3:	F1[] ← Iterate, packet dump for Flow 1
4:	F2[] ← Iterate, packet dump for Flow 2
5:	while i from 0 to #_packet_constraint do
5: 6:	while j from 0 to #_packet_constraint do
7:	if F1[i].packet_size - F2[j].packet_size < threshold
8:	result_LCS ← LASER (F1[i], F2[j])

Number of packets per flow constraint Packet size constraint F1 and F2 are used as input to LASER

Refining Process

- 12: S ←select the longest from LCS_Pool
- 13: while i from 0 to number of rest flows of Flow_Pool do
- 14: Fi ← select one from the rest of Flow_Pool
- 15: result_LCS ← LASER (S, Fi)
- 16: S ← select the longest from result_LCS
- 17: i++, end while, end while

Simply put,

```
Candidate_signature_1 = Signature (Flow 1, Flow 2)
Candidate_signature_2 = Signature (Flow 3, Candidate_signature_1)
```

• • •

```
Candidate signature_n = Signature (Flow n+1, Candidate_signature_n-1)
```

If Candidate_signature_n = Candidate signature_n-1 For the certain iteration counts then Candidate_signature_n is the final signature

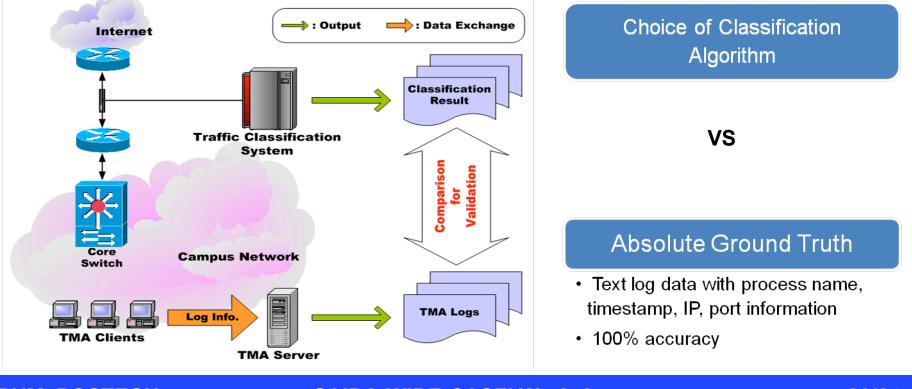
Signatures by LASER

LimeWire	Sequence of 10 substrings - "LimeWire", "Content-Type:", "Content-Length:", "X-Gn utella-Content-URN", "run:sha:1", "XAlt", "X-Falt", "X-C reate-Time:", "X-Features:", "X-Thex-URI"
BitTorrent	Sequence of 1 substring- "0x13BitTorrent protocol"
Fileguri	Sequence of 6 substrings- "HTTP", "Freechal P2P", "User-Type:", "P2PErrorCode:", "C ontent-Length:", "Content-Type:", "Last-Modified"

Choice of P2P applications for early evaluation

Signature extraction from encrypted traffic: Skype v3.0

- No signature was found yet
- The signatures of v1.5 and v2.0 [Ehlert '06] were not valid anymore


Classification with Absolute Ground Truth

Validation approaches

- Cross match with known signatures
- Cross validation with other classification method
- Cross validation with ground truth set

Agent-based log collection

Traffic Measurement Agent (TMA)

DPNM, POSTECH

Automated Signature Generation System

LASER agent

- Signature extraction of on-going application in PC
- Reporting to the collecting server periodically
- MSDN functions for process id and name look up
- Winpcap for packet dump
- Low CPU load (<5%) and memory consumption</p>

Collection server

- Aggregating signatures according to process name
- Filtering process Applying the LASER algorithm among the colle cted signatures
 - Removing garbage characters/terms
 - Finding common set among possible candidates
- Open Signature List: <u>http://dpnm.postech.ac.kr/signature</u>
 - LASER agent program is available.
 - Providing over 80 pre-searched signatures by exhaustive search a nd in related literatures
 - Providing a list of automatically generated signatures for comparis on

Concluding Remarks

We have shown

- POSTECH's efforts on traffic monitoring and analysis
- Automated signature generation algorithm

We propose a open repository for signatures

Future Work

- Automated rule discovery system
 - Containing not just signatures, but pattern information
- A new approach to cope with encryption or tunneling tra ffic
- Signatures for WiMAX applications (Wibro in Pohang)
- Certifying signatures

Ground Truth vs. LASER

Application	TMA Log (MB)	Classification Result (MB)	False Negati ve (%)	False Positi ve (%)	
LimeWire	1223.36	1120.35	8.42	0	
BitTorrent	4190.07	3754.30	10.40	0	
Fileguri	3189.61	3177.17	0.39	0	
Others	12482.69	13033.91	-	-	
Total			-	-	
Overall Accuracy	97.39 %				

Accuracy analysis against signature-based classification algorithms

• LASER algorithm achieves 97% accuracy

✤ 0% FP: Restricted signature format

- HTTP traffic was not classified as LimeWire or Fileguri
- Cause of FN: HTTP traffic, packets containing flags only

Screenshots (1/3)

🖉 Automated Signature Generation Research - Windows Internet Explorer http://bonn.postech.ac.kr/laser/ 🗸 😽 🗙 🛛 Google Q 🟠 🔹 🔊 🕤 🚽 🚔 🔹 페이지(P) 🗸 🙆 도구(0) 🗸 Automated Signature Generation Research **Automated Signature Genaration for Traffic Identification** Introduction Traditionally, Internet applications have been identified by using predefined well-known ports with questionable accuracy. An alternative Automated Generation approach, application-layer signature mapping, involves the exhaustive search of reliable signatures but with more promising accuracy. With a Manual Search prior protocol knowledge, the signature generation can guarantee a high accuracy. As more applications use proprietary protocols, it becomes Download incresingly difficult to obtain an accurate signature while avoiding time-consuming and manual signature generation process. We propose a LCS-based (Longest common subsequence) Application Signature ExtRaction algorithm (LASER), which can automatically determine a trustworthy patter in the packet's payload without a prior knowledge of protocol formats. Although there have been a few research on worm signature generation, it is difficult to adopt the popular sliding window algorithm that has been applied to worm signature generation due to the differences in traffic nature between innocuous network-based applications and worms. To our knowledge, no other research has attempted to automatically generate signatures for non-threatening Internet applications. REFERENCES [1] S. Sen and J. Wang, 'Analyzing peer-to-peer traffic across large networks,' 2002 ACM SIGCOMM Internet Measurement Workshop, Marseilles, France, Nov. 2002. [2] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy, and J. Zahorian. 'Measurement, modeling, and analysis of a peer-topeer File-sharing workload,' 19th ACM Symposium on Operating Systems Principles (SOSP-19), Oct. 2003. [3] W. Scheirer, M. Chuah. 'Comparison of Three Sliding-Window Based Worm Signature Generation Schemes,' Technical Report LU-CSE-05-025. [4] Thomas Karagiannis, Andre Broido, Michalis Faloutsos, and KC Claffy. 'Transport layer identification of p2p traffic,' Internet Measurement Conference (IMC), 2004. [5] Young J. Won, Byung-Chul Park, Hong-Taek Ju, Myung-Sup Kim, and James W. Hong, 'A Hybrid Approach for Accurate Application Traffic Identification.' IEEE/IFIP E2EMON Workshop, Vancouver, April 2006, pp. 1-8. [6] Byung-Chul Park, Young J. Won, Myung-Sup Kim, and James Won-Ki Hong. 'Towards Automated Application Signature Generation for Traffic Identification,' Proc. of the IEEE/IFIP Network Operations and Management Symposium (NOMS 2008), Salvador, Brazil, April 2008, pp. 160-167.

Screenshots (2/3)

🕑 🔻 🙋 http://bonn,	postech,ac,kr/laser/	×	←, ×	Google
🛠 🏾 🏉 Automated Sign	ature Generation Research		• 🔊	- 🖶 🔻 🔂 페이지(P) 🗸 🍈 도구
utomated	Signature G	enaration for Traffic Identificati	on	
<u>oduction</u> omated Generation nual Search		HTTP User-Agent GigaTribe Host login gigatribe com Cache-Control no- cache Cookie referer www.google utma utmz utmccn organic utmcsr google utmctr gigatribe utmcmd organic whitehat CreationDate	out	2008-08-11 18:03:01
vnload	Man Mara Erro	GET messengertabs png HTTP Accept If-Modified-Since Tue Apr GMT If-None-Match User-Agent Mozilla compatible MSIE Windows InfoPath NET CLR Windows Live Messenger Host akimages msn Connection Keep-Alive Cookie MUID EDE		2008-08-08 02:24:23
	MsnMsgr.Exe	GET messengertabs png HTTP Accept If-Modified-Since Tue Apr GMT If-None-Match User-Agent Mozilla compatible MSIE Windows InfoPath NET CLR Windows Live Messenger Host akimages msn Connection Keep-Alive Cookie MUID EDE		2008-08-08 02:24:23
	NATEONMain exe	GET onlinead SKT T-olympic swf HTTP Accept Accept-Language ko- KR Referer http adimg nate com img swf x-flash-version UA-CPU Accept-Encoding gzip deflate User-Agent Mozilla compatible MSIE Windows InfoPath NET CLR Host img wise aircross com Connection Keep-Alive Cookie EMSID	in	2008-08-07 17:39:34
	NA LEONMan.exe	GET onlinead SKT T-olympic swf HTTP Accept Accept-Language ko- KR Referer http adimg nate com img swf x-flash-version UA-CPU Accept-Encoding gzip deflate User-Agent Mozilla compatible MSIE Windows InfoPath NET CLR Host img wise aircross com Connection Keep-Alive Cookie EMSID	out	2008-08-07 17:39:34
	OUTLOOK EXE		in	
		+OK POP3 TIMS server ready @postech.ac.kr	out	2008-03-03 19:12:08
	Skype.exe		in	2008-08-09 02:51:20
			out	2008-08-09 02:51:20
	tor.exe		in	2008-08-12 11:18:49
		www.net www.net.mmQ	out	2008-08-12 11:18:49
	Wow.exe	WoW niW RKok WHITEHAT	in	2008-08-11 04:05:22
		WoW niW RKok WHITEHAT	out	2008-08-11 04:05:22
	Zultrax Exe	GET uri-res urn sha NWQGXIA UKUJOGY VKU VDFLT HTTP Node User-Agent LimeWire Connection Keep-Alive Range bytes	in	2008-08-07 00:37:10
	Edd dr. Dre	GET uri-res urn sha NWQGXIA UKUJOGY VKU VDFLT HTTP	out	2008-08-07 00:37:10

DPNM, POSTECH

Screenshots (3/3)

🖉 Automated Signature G	eneration Research - Win	dows Internet Explorer	
😋 🕞 👻 🙋 http://bonn.po	stech,ac,kr/laser/	Google	P -
🚖 🏟 🌈 Automated Signat	ure Generation Research	🖄 • 🗟 - 🖶 • 🔂 ଆଠାସ(P) • 🤅)도구(<u>0</u>) → [≫]
Automated S	ignature Gen	aration for Traffic Identification	
Introduction Automated Generation	* Signatures from Application	IS	<u>~</u>
Manual Search	Application	Signature	
Download	Azureus	"POST /rpc/config" "HTTP/ <version>" "User-Agent:Azureus<version>" "Host :"</version></version>	
	GigaTribe	"GET" "&p=" "&cmd=OpenSession" "HTTP/1.1" "User-Agent:GigaTribe" "HTTP/1.1" "200 OK"	
	Zultrax	"ZEPP 19 29 {port}"-offset(0) 0x0d0a0d0a, "ZEPP OK {number12,28,29} {my IP address:port}"-offset(0) 0x0d0a0d0a	
	Bitlord	"GET" "HTTP" "User-Agent:BitTorrent" "www.bitlord.com"	
	DC++	"GET" "HTTP" "User-Agent:DC++"	
	Tor	"Get /tor/server" "Get/tor/statur"	
	Gtalk	stream:stream to="gmail.com" xmlns="jabber:client"	
	AntsP2P	"NOTIFY * HTTP" "USN: uuid:ANtsP2P"	
	KCeasy	"GET / HTTP/"offset(0) "cookie:Kceasy"	
	Limewire	"GET" "User-Agent: LimeWire/" "Java/"	
	Stealth	"POST /rshare" "HTTP/1.1"	
	TruxShare	"LARS REGENSBURGER'S FILE SHARING PROTOCOL 0.2" offset(0)	
	iMesh	"POST" offset(0) "function=login" "Host: login.imesh.com"	
	Mute	"client=MUTE&version="offset(12)	
	Soulseek	"GET "offset(0) "User-Agent: SoulSeek"	
	Skype	"GET "offset(0) "HTTP" "User-Agent: skype"	

* Signatures from Snort P2P

Application/Type:	Content	Offset	Depth	Distance	Within	Direction	Home Port	External Port
P2P napster login	" 00 02 00 "	1	3			out	any	8888
P2P napster new user login	"00 06 00"	1	3			out	any	8888
P2P napster download attempt	00 CB 00	1	3			in	8888	any

DPNM, POSTECH