

Path Stitching: Internet-Wide Path and Delay Estimation from Existing Measurements

DK Lee, Keon Jang, Changhyun Lee, Sue Moon, Gianluca lannaccone*

CAIDA-WIDE-CASFI Workshop @ LA Aug 15, 2008

Division of Computer Science, KAIST Intel Research, Berkeley*

Motivation behind Path Stitching

- Distributed applications are popular in today's Internet
 - P2P file sharing, content distribution networks, multi-player online games
- These applications benefit from information about the Internet path between their nodes
 - Nearest neighbor discovery, leader node selection, distribution tree construction
- Our goal is a DNS-like system that provides network information

Key idea behind Path Stitching

- Internet separates inter-domain and intra-domain routing
 - Path stitching splits paths into path segments , and stitches path segments together using BGP routing information to predict a new path
- Many measurement data are available already, and we use them and do no additional measurement

Talk outline

- Path Stitching algorithm
- When Path Stitching produces no stitched path
 - Approximation heuristics
- When Path Stitching produces multiple paths
 - Preference rules
- Evaluation

Conclusion and Future Work

CAIDA Workshop (August 15, 2008) -- Keon Jang (keonjang@an.kaist.ac.kr)

Data set

- CAIDA Ark's traceroutes
 - One round of *traceroute* outputs from 18 sources to every /24 prefix
 - 14 millions of *traceroute* outputs
- BGP routing tables
 - University of Oregon, *RouteViews*' BGP listener
 - RIPE RIS' 14 monitoring points (rrc00 ~ rrc07, rrc10 ~ rrc15)

Notations

- :X: Intra-domain paths of AS X
- X::Y Inter-domain edges between AS X and Y
- :X: + X::Y + :Y: = :X::Y:
 - » Internet forwarding paths from AS ${\bf X}$ to ${\bf Y}$

Overview of Path Stitching

What are Internet forwarding paths and end-to-end delay between two arbitrary Internet host a and c?

Index building

In order to make a huge number of *traceroute* measurements *searchable*,

Choices

- Build indices for all possible partial paths
 - ABCD, ABC, BCD, AB, BC, CD, CD, A, B, C, D
 - Requires O(l²) space

Build indices for intra AS and inter AS segments

- A, B, C, D, AB, BC, CD
- Requires O(l) space

Step 1. IP to AS mapping

Use BGP routing table snapshots:

- An IP address is mapped to the *longest matching IP prefix* in a table,
- Take the last hop in the AS-PATH as the origin AS

Errors in IP to AS mapping

- Single origin AS mismatch
 - Mao et al reported that inaccurate mapping result in
 - Missing AS hop, extra AS hop, substitute AS hop, two hop AS loops
 - 8.9% AS paths contain two-hop AS loops
 - If we use the same IP-to-AS mapping for a query, the outcome would be consistent although mismatched.
- Multiple origin AS (MOAS)
 - 2,651,387 traceroutes have MOAS conflicts
 - 22.61% of MOAS are caused by Internet exchange prefixes
 - Infer AS paths from all MOASes

Step 2. AS path inference

- Qiu and Gao's methodology [GLOBECOM'06]
 - Exploits the AS paths, *known paths*, appeared in BGP routing tables.
 - Infer AS paths that satisfying valley-free property [L.Gao, TON'00]

Choose shortest path with low *unsure length* and high *frequency index* Accuracy of 60% reported

CAIDA Workshop (August 15, 2008) -- Keon Jang (keonjang@an.kaist.ac.kr)

Step 3. Stitching path segments

Sources of error – traceroute

- Dynamic nature of the Internet
 - » Record all reported measurement per path segment.
 - » Report the most recent or median of the past known history.
- Non-decreasing delay principle

CAIDA Workshop (August 15, 2008) -- Keon Jang (keonjang@an.kaist.ac.kr)

Case #1: No path segments in source/destination AS

The source or the destination is not in the same AS with any measurement data

Data type	Total AS	Transit AS	Stub AS
Ark	14,378	4,418	9,960
BGP	28,244	4,847	23,397

- For 90% of undiscovered AS in Ark, the traceroute did not reach to AS
- ASes not covered by Ark accounts for only 110M or 5.8% of IP addresses in BGP

Case #2: No segments in the middle of inferred AS path

- No inter-domain path segment
- Incorporating the reverse inter-domain segments

No intra-domain path segmentNo solution yet

Case #3: Segments does not rendezvous at the same address

For all ASes along the path has segments, but they do not rendezvous at the same address

 $\mathbf{X::A::W} = ?$

- Clustering heuristics:
 - Identifying IP address of the same router
 - Clustering IP addresses in a single Point-of-presence (PoP)
 - Clustering two ending points based on their *IP prefix proximity*

When Path Stitching produces multiple paths

- Rank stitched paths using preference rules
- Same destination bound path segments
 - The more same destination bound path segments in a stitched path, the more this path is close to the real path
- Closeness to source and destination
 - For 20% of ASes, delay difference of path segments in an AS is larger than 100ms

Evaluation

Evaluate:

1. Similarity between inferred AS path and AS path mapped from traceroutes

2. Effectiveness of approximation heuristics

Data set for evaluation: nari ta : traceroute outputs from Ark monitor *nrt-jp* (Collected on April 11)

AS path similarity

How close is inferred AS path to the AS path from traceroutes?

» 24% of inferred paths are shorter than **nari ta** paths.

>>

Effectiveness of approximation heuristics

No stitched path without approximation

959(11%) path segment missing on inferred AS path

1453(16%) no stitched path

1724(20%) /28 clustering

2492(29%) Router/PoP clustering

2051(24%) Reverse segments

» Router/PoP clustering and /28 IP prefix clustering significantly enlarge the coverage.

Conclusions

- Path and latency prediction by combining traceroutes and BGP data
- Our approach uses existing measurement data and do no additional measurement
- Evaluation results are preliminary, but promising

Future Work

- Devise a mechanism to select a best path amongst many stitched paths
- Incorporate more datasets to improve coverage and accuracy
- Include performance metrics to include bandwidth and loss rate
- Build and deploy DNS-like system in the real-world

Thank you!

- Any question?
- For more question: <u>keonjang@an.kaist.ac.kr</u>

Same destination-bound preference

planetlab2.xeno.cl.*cam.ac.uk* pl1-higashi.ics.es.*osaka-u.ac.jp*

» Preference to the same destination-bound path segments

Closeness to source and destination

Planetlab2.csil.*mit.edu* → planet2.scs.*stanford.edu*

In 20 % of Ases, delay difference within an AS is > 100 ms.
» Preference to the closest points in source and destination ASes

Preference rules

» Destination-bound and proximity rules prune large amounts of spurious paths

Preference rules

» Destination bound and proximity rules help to *improve accuracy*