Evaluation of Anomaly Detection Method based on Pattern Recognition

- Romain Fontugne
 The Graduate University for Advanced Studies
- Yosuke Himura
 - The University of Tokyo
- Kensuke Fukuda
 National Institute of Informatics

Outline

- Motivation
- Temporal-spatial structure of anomaly
- Pattern-recognition-based method
 - Hough transform
- Parameter space
- MAWI database
- Study case
- Conclusion

Motivation (1)

- Network traffic anomaly:
 - Misconfigurations, failure, network attacks
- Side effects:
 - Bandwidth consuming
 - Weaken network performance
 - Harmful traffic
 - Alter the traffic's characteristics

Motivation (2)

- Difficulties:
 - Huge amount of data
 - Variety of anomalous traffic
 - Identification of tiny flows
- Anomaly detection method:
 - Usually treated as a statistical problem
 - Evaluate the main characteristics of traffic
 - Discriminate traffic with singularities

Temporal-spatial structure of anomaly (darknet)

- Unwanted traffic
 - Linear structures

Unusual distribution of traffic feature

Time

Temporal-spatial structure of anomaly (MAWI)

• Samplepoint-F: - 2009/02/21

address estination

Pattern-recognition-based method

- Identification of linear structures in pictures:
 - Generate pictures from traffic
 - Hough transform
 - Retrieve packet information
 - Report anomalies

Hough transform

- Voting procedure
 - Points elects lines
 - Polar coordinates $\rho = x \cdot \cos \theta + y \cdot \sin \theta$
 - Hough space

- Identify line means extract max in the Hough space
 - Relative threshold

Parameter space

- Hough parameter:
 - Weight for the voting procedure
 - Threshold to determine candidate line
- Picture resolution:
 - Time bin
 - Size of pictures

Evaluation of parameter space

- Heuristics:
 - suspected = false positive + unknown
- Prob. of suspected = suspected / total anomalies
 Lower is better

MAWI database

Study case: sasser infection

- Gamma modeling vs. Pattern recognition (2004/08/01)
- Gamma modeling-based method tuned to detect the same number of anomalies (Includes many false positives)

Hough only

1 11 lation đ

WH WHAT WALKING

Both . B I 1184 fi the IL.

nb. pkt

entropy

nb.

dī

source

port

- H

pkt

port

MAN

Gamma only

Discussion

- Two different backgrounds
 - 50% of their results in common
- Detection of anomalies involving a tiny number of packets
- Identify easily network/port scans (dispersed distribution)
- Intensive uses of source port
- Gamma modelling = deeper analysis of the traffic's characteristics (highlight singular traffic)

Conclusion and future work

- No perfect method
- Combination of several methods
- Need of methods with different backgrounds
- Future work
 - Auto-tuning of parameters
 - Sampled data
 - More graphical representations
 - Study good combinations

Thank you

Any questions?

romain@nii.ac.jp

Original data

Destination

ip

source

port

port entropy

volume

18