# Protecting Internet Threat Monitors: A Statistical Filtering Approach

Yoichi Shinoda JAIST



# **Mapping Internet Monitors**

- Two papers were presented/published at the 14th USENIX Security Symposium (Aug. 2005).
  - <u>Mapping Internet Sensors with Probe</u>
    <u>Response Attacks</u>

John Bethencourt, Jason Franklin, and Mary Vernon, University of Wisconsin, Madison

<u>Vulnerabilities of Passive Internet Threat</u>
 <u>Monitors</u>

Yoichi Shinoda, Japan Advanced Institute of Science and Technology; Ko Ikai, National Police Agency of Japan; Motomu Itoh, Japan Computer Emergency Response Team Coordination Center (JPCERT/CC)

#### Mapping example: ISDAS marking & feedback

- Marking design
  - Range: Address blocks assigned to 3 IXes.
  - Marker: UDP/137
    - Was in the top-5.
    - Low dynamic range.
  - Algorithm: Time-series
  - Velocity: Each /24 block in an hour
  - Intensity: Each address were marked with 90 markers (to make 3 unit high spike in the graph of avg. count per sensor, where there are 30 sensors).



One /24 block hosting one sensor was identified

# **SD Filtering**

- Omit counts from sensors reporting "unusual counts":
  - if (count >  $m + \rho \times \sigma$ ) then drop; where
    - *m* = avg of all sensor counts
    - $\sigma$  = stddev of all sensor counts
    - $\rho$  = magic multiplier
  - The magic value is in the range 5.0 6.0 (and sometimes up to 7.0) for several different distributed architecture monitors.

## SD filtering @ 6.5 $\sigma$



TIME

## SD Filtering @ 6.2 $\sigma$



TIME

# SD Filtering @ 4.5 $\sigma$



TIME

## **Quartile Filtering**



#### **Some Results**



