Competing Network Technologies The Role of Gateways

Roch Guérin

Dept. Elec. & Sys. Eng University of Pennsylvania

Acknowledgments

- This is joint work with
 - Youngmi Jin and Soumya Sen (Penn, ESE)
 - Kartik Hosanagar (Penn, Wharton)
- and in collaboration with
 - Andrew Odlyzko (U. Minn)
 - Zhi-Li Zhang (U. Minn)

Outline

• Why this work?

Problem formulation and motivations

- Model scope and characteristics
- A brief glance at the machinery
- The insight and surprises
 - Key findings and representative examples
- Conclusion and extensions
 - What next?

Background and Motivations

- Deploying new (network) technologies (and architectures) is rife with uncertainty and challenges
 - Presence of an often formidable incumbent (e.g., today's Internet)
 - Dependencies on what others do (externalities)
 - Migration and upgrade issues (infrastructure wide)
- Can we develop models that provide insight into
 - When, why, and how new technologies succeed?
 - What parameters affect the outcome, and how do they interact?
 - Intrinsic technology quality, price, individual user decisions, etc.
 - To what extent do gateways/converters between old an new technologies influence deployment dynamics and eventual equilibria?
- P.S.: The models have applicability beyond networks

Problem Formulation

- Two competing and incompatible technologies
 - Different qualities and price
 - Value of technology also depends on number of adopters (externalities)
 - Tech. 1 is the incumbent
 - Tech. 2 enters the market with zero initial penetration
- Users individually (dis)adopt either technology or none ($0 \le x_1 + x_2 \le 1$)
 - Decision based on technology *utility*
- Gateways/converters offer possible inter-operability
 - Allows users of one technology to communicate with users of the other
 - Independently developed by each technology
 - Gateways/converters characteristics/performance
 - Duplex vs. simplex (independent in each direction or coupled)
 - Asymmetric vs. symmetric (performance/functionality wise)
 - Constrained vs. unconstrained (performance/functionality wise)

Utility Function

Technology 1: $U_1(\theta, x_1, x_2) = \theta q_1 + (x_1 + \alpha_1 \beta x_2) - p_1$ Technology 2: $U_2(\theta, x_1, x_2) = \theta q_2 + (\beta x_2 + \alpha_2 x_1) - p_2$

- A closer look at the parameters
 - Cost (recurrent) of each technology (p_i)
 - Externalities: linear in the number of adopters Metcalfe's law
 - Normalized to 1 for tech. 1
 - Scaled by β for tech. 2 (possibly different from tech. 1)
 - α_i , $0 \le \alpha_i \le 1$, i = 1, 2, captures gateways' performance
 - Intrinsic technology quality (q_i)
 - Tech. 2 better than tech. 1 $(q_2 > q_1)$ but no constraint on magnitude, i.e., stronger or weaker than externalities (can have $q_2 > q_1 \approx 0$)
 - User sensitivity to technology quality (θ)
 - Private information for each user, but known distribution

User Decisions

- Decision thresholds associated with *indifference points* for each technology choice: $\theta_1^{0}(\underline{x}), \theta_2^{0}(\underline{x}), \theta_2^{-1}(\underline{x})$
 - $U_1(\theta, \underline{x}) > 0$ if $\theta \ge \theta_1^{0}(\underline{x})$ Tech. 1 becomes attractive
 - $U_2(\theta, \underline{x}) > 0$ if $\theta \ge \theta_2^{0}(\underline{x})$ Tech. 2 becomes attractive
 - $U_2(\theta, \underline{x}) > U_1(\theta, \underline{x})$ if $\theta \ge \theta_2^{-1}(x)$ Tech. 2 over Tech. 1
- Which technology would a rational user choose?
 - None if $U_1 < 0$, $U_2 < 0$
 - Technology 1 if $U_1 > 0$, $U_1 > U_2$
 - Technology 2 if $U_2 > 0$, $U_1 < U_2$
- Decisions can/will change as <u>x</u> evolves

Anchoring the Model

1. $IPv4 \leftrightarrow IPv6$

Duplex, asymmetric, constrained gateways

2. Low def. video conf. ↔ High def. video conf.
– Simplex, asymmetric, unconstrained converters

IPv4 (Tech. 1) \leftrightarrow IPv6 (Tech. 2)

IPv4: $U_1(\theta, x_1, x_2) = \theta q_1 + (x_1 + \alpha_1 \beta x_2) - p_1$ IPv6: $U_2(\theta, x_1, x_2) = \theta q_2 + (\beta x_2 + \alpha_2 x_1) - p_2$

- Setting
 - We are (eventually) running out of IPv4 addresses
 - Providers will need to start assigning IPv6 only addresses to new subscribers (p_{IPv4}=p₁>p₂=p_{IPv6})
 - IPv4 and IPv6 similar as "technologies" ($q_1 \approx q_2$ and $\beta=1$)
- Mandatory IPv6<->IPv4 gateways for transition to happen
 - Most content is *not* yet available on IPv6
 - Little in way of incentives for content providers to do it
 - Duplex, asymmetric, constrained converters
- Users technology choice
 - Function of price and accessible content

Low-def. video \leftrightarrow High-def. video

Low-def: $U_1(\theta, x_1, x_2) = \theta q_1 + (x_1 + \alpha_1 \beta x_2) - p_1$ High-def: $U_2(\theta, x_1, x_2) = \theta q_2 + (\beta x_2 + \alpha_2 x_1) - p_2$

- Setting
 - Two video-conf service offerings: Low-def & High-def
 - Low-def has lower price ($p_1 < p_2$), but lower quality ($q_1 < q_2$)
 - Video as an asymmetric technology
 - Encoding is hard, decoding is easy
 - Low-def subscribers could *display* high-def signals but not generate them
 - Externality benefits of High-def are higher than those of Low-def ($\beta > 1$)
- Converters characteristics
 - High/Low-def user can decode Low/High-def video signal
 - Simplex, asymmetric, unconstrained
- Users technology choice
 - Best price/quality offering
 - Low-def has lower price but can enjoy High-def quality (if others use it...)

Key Findings – (1)

- The system can have at most two stable equilibria (among Tech. 1 wins, Tech.2 wins, Tech. 1 and Tech. 2 coexist)
 - Initial penetration determines the outcome
- 2. Gateways can help either technology
 - Technology 2 can only benefit from better
 gateways, while they can harm technology 1
- 3. Better gateways can harm overall penetration

A "Typical" Outcome

- Separatrix passes through unstable equilibrium and demarcates basins of attraction of each stable equilibrium
- Final outcome is hard to predict simply from the evolution of adoption decisions

Key Findings – (1)

- The system can have at most two stable equilibria (among Tech. 1 wins, Tech.2 wins, Tech. 1 and Tech. 2 coexist)
 - Initial penetration determines the outcome
- 2. Gateways can help either technology
 - Technology 2 can only benefit from better gateways, while they can harm technology 1
- 3. Better gateways can harm overall penetration

Gateways Help the IPv6 Entrant

- Assumes IPv6 slightly "better" than IPv4 (same result if the other way around)
- In the absence of gateways, IPv6 never takes off unless IPv4 initial penetration is very low...
- After introducing gateways, IPv6 eventually takes over, irrespective of IPv4 initial penetration
 - There is a "threshold" value (**70%**) for gateway efficiency below which this does not happen!

Gateways Can Also Help the Incumbent

- No gateways: Tech. 2 wipes out Tech. 1
- Perfect gateways: Tech. 1 nearly wipes out Tech. 2 (cannot eliminate it entirely though)

Key Findings – (1)

- The system can have at most two stable equilibria (among Tech. 1 wins, Tech.2 wins, Tech. 1 and Tech. 2 coexist)
 - Initial penetration determines the outcome
- 2. Gateways can help either technology
 - Technology 2 can only benefit from better
 gateways, while they can harm technology 1

3. Better gateways can harm overall penetration

Hurting Overall Market (Asymmetric Gateways – Tech. 1)

- In the absence of gateways, Tech. 2 takes over the entire market
- Tech. 1 introduces gateways of increasing efficiency

 Tech. 1 reemerges, but ultimately reduces overall market
 penetration

Hurting Overall Market (Asymmetric Gateways – Tech. 2)

- Tech. 2 fails to gain market share without gateways
- Tech. 2 introduces gateways of increasing efficiency
 - Tech. 2 gains market share, but at the cost of a lower overall market penetration

Hurting Overall Market (Symmetric Gateways)

- Better gateways take Tech. 2
 - From 100% market penetration
 - To a combined market penetration below 20%!

Key Findings – (2)

- 4. Gateways can prevent convergence of technology adoption (cyclical trajectories)
 - Does *not* arise when gateways are absent
 - Occurs in the presence of heterogeneous technologies with $\alpha_1\beta > 1$, *i.e.*, Tech. 1 users can access Tech. 2 externality benefits (the videoconf example)

Asymmetric Gateways

(From Stable to Unstable)

 As the efficiency of Tech. 1 gateway increases, system goes from dominance of Tech. 2 to a system with no stable state

– No stable equilibrium for α_1 =1 and α_2 =0

Symmetric Gateways

(From Stable to Unstable to Stable)

- No gateways: Tech. 2 captures full market
- Low efficiency gateways: No stable outcome
- Medium efficiency gateways: Neither tech. makes much inroad
- High efficiency gateways: Tech. 1 dominates at close to full market penetration

Results Robustness

- Most/all results hold for a wide range of model variations
 - No closed-form solutions, but numerical investigations are possible
- Model variations
 - Heterogeneity in user decisions (θ)
 - Non-uniform distributions
 - Positively and negatively skewed Beta-distributions
 - Extended to externality benefits
 - Other externality models
 - Non-linear externalities
 - Sub-linear: x^{α} , $0 < \alpha < 1$
 - Super-linear: x^{α} , $\alpha > 1$
 - Logarithmic: log(x+1)
 - Pure externalities (no intrinsic technology value)

Summary

- Gateways are "good"
 - Facilitate technology coexistence and ease adoption of new technologies
 - Allow improved overall market penetration
- Gateways are "bad"
 - Hurt an individual technology (Tech. 1 only)
 - Lower overall market penetration
 - Introduce instabilities ($\alpha_1\beta > 1$)

The good news: Harmful effects are largely absent in most "standard" technology transition scenarios, e.g., IPv4-IPv6 migration

- Natural extensions
 - Switching costs (non-trivial model changes, but results appear to hold)
 - Time-varying parameters (price and quality of technology)
 - Strategic policies (dynamic pricing)