The Impact of Router Outages on the AS-Level Internet

Matthew Luckie* - University of Waikato Robert Beverly - Naval Postgraduate School

*work started while at CAIDA, UC San Diego

SIGCOMM 2017, August 24th 2017

Example #A

Example #B

CE: Customer Edge PE: Provider Edge

If the CE router fails,
 the network is disconnected,
 so the CE router is a
 Single Point of Failure (SPoF)

Example #A

CE: Customer Edge PE: Provider Edge

If the CE router fails, the network has an alternate path available, so the CE router is NOT a Single Point of Failure (SPoF)

Example #B

CE: Customer Edge PE: Provider Edge

PF

If the PE router fails, the customer network is disconnected, so the PE router is a Single Point of Failure (SPoF)

Example #B

CE: Customer Edge PE: Provider Edge

Challenges in topology analysis

- Prior approaches analyzed static AS-level and router-level topology graphs,
 - e.g.: Nature 2000
- Important AS-level and router-level topology might be invisible to measurement, such as backup paths,
 - e.g: INFOCOM 2002
- A router that appears to be central to a network's connectivity might not be
 - e.g.: AMS 2009

Large-scale (**Internet-wide**) longitudinal (**2.5 years**) measurement study to characterize prevalence of Single Points of Failure (**SPoF**):

I. Efficiently inferred IPv6 router outage time windows

2. Associated routers with IPv6 BGP prefixes

3. Correlated router outages with BGP control plane

4. Correlated router outages with data plane

5. Validated inferences of SPoF with network operators

What we did Identified IPv6 router interfaces from traceroute

83K to 2.4M interfaces from CAIDA's Archipelago traceroute measurements

What we did probed router interfaces to infer outage windows

We used a single vantage point located at CAIDA, UC San Diego for the duration of this study

Central counter: 9290

Central counter: 9292 9290 T_1 : T₂: **929** 929

Central counter: 9293 T_I: 9290 T₂: 9291 T₃: **9292** 9292

Central counter: 9294

Central counter: 9295 T_I: 9290 T₂: 9291 T₃: 9292 9294 T₄: 9293 T₅: **9294**

Central counter: 2

Central counter: 3 T_I: 9290 T₂: 9291 T₃: 9292 T₄: 9293 T₅: 9294 T_6 : T₇: **2**

Central counter: 4 T_I: 9290 T₂: 9291 T₃: 9292 T₄: 9293 T₅: 9294 Τ₆: T₇: 2 T₈: **3**

What we did probed router interfaces to infer outage windows using IPID

Infer a reboot when time series of values returned from a router is discontinuous, indicating router was restarted

Why IPv6 fragment IDs?

- IPv4 Fragment IDs:
 - 16 bits, **bursty velocity**: every packet requires unique ID
 - At 100Mbps and 1500 byte packets, Nyquist rate dictates
 4 second probing interval
- IPv6 Fragment IDs:
 - 32 bits, low velocity: IPv6 routers rarely send fragments
 - We average **I5 minute probing interval**

classified impact on BGP according to observed activity overlapping with inferred outage

- Complete Withdrawal: all peers simultaneously withdrew route for at least 70 seconds
 - Single Point of Failure (SPoF)
- Partial Withdrawal: at least one peer withdrew route for at least 70 seconds, but not all did
- **Churn**: BGP activity for the prefix
- No Impact: No observed BGP activity for the prefix

What we did Data Collection Summary

- Probed IPv6 routers at ~15 minute intervals from 18 Jan 2015 to 30 May 2017 (approx. 2.5 years)
- 149,560 routers allowed reboots to be detected
- We inferred 59,175 (40%) rebooted at least once,750K reboots in total

What we found

- 2,385 (4%) of routers that rebooted (59K) we inferred to be **SPoF** for at least one IPv6 prefix in BGP
- Of SPoF routers, we inferred **59%** to be customer edge router; **8%** provider edge; **29%** within destination AS
- No covering prefix for 70% of withdrawn prefixes
 - During one-week sample, covering prefix presence during withdrawal did not imply data plane reachability
- IPv6 Router reboots correlated with IPv4 BGP control plane activity

Limitations

- Applicability to IPv4 depends on router being dual-stack
- Requires IPID assigned from a counter
 - Cisco, Huawei, Vyatta, Microtik, HP assign from counter
 - 27.1% responsive for 14 days assigned from counter
- Router outage might end before all peers withdraw route
 - Path exploration + Minimum Route Advertisement Interval (MRAI) + Route Flap Dampening (RFD)
- Complex events: multiple router outages but one detected
 - We observed some complex events and filtered them out

	Reboots		SPoF			
Network		×	?		×	?
US University	7	0	8	7	0	8
US R&E backbone #1	2	0	3	3	2	0
US R&E backbone #2	3	0		0	0	4
NZ R&E backbone		0	22	4	2	27
Total:	23	0	34	14	4	39

- Validated Inference
- X = Incorrect Inference
- **?** = Not Validated

	Reboots		SPoF			
Network		×	?		×	?
US University	7	0	8	7	0	8
US R&E backbone #1	2	0	3	3	2	0
US R&E backbone #2	3	0		0	0	4
NZ R&E backbone		0	22	4	2	27
Total:	23	0	34	14	4	39

Challenging to get validation data: operators often could only tell us about the last reboot

	Reboots		SPoF			
Network		×	?		×	?
US University	7	0	8	7	0	8
US R&E backbone #1	2	0	3	3	2	0
US R&E backbone #2	3	0		0	0	4
NZ R&E backbone		0	22	4	2	27
Total:	23	0	34	14	4	39

No falsely inferred reboots: we correctly observed the last known reboot of each router

	Reboots		SPoF			
Network		×	?		×	?
US University	7	0	8	7	0	8
US R&E backbone #1	2	0	3	3	2	0
US R&E backbone #2	3	0		0	0	4
NZ R&E backbone		0	22	4	2	27
Total:	23	0	34	14	4	39

We did not detect some SPoFs

Correlating BGP/router outages Control: six hours prior to inferred outages, Feb 2015

Correlating BGP/router outages During the inferred outages, Feb 2015

BGP Prefix Withdrawals: SPoF

SPoF prefixes mostly single homed

Prefix announced through multiple upstreams

Summary

- Step towards root-cause analysis of inter-domain routing outages and events
 - Explore applicability of method to measurement of other critical Internet infrastructure: DNS, Web, Email
- In our 2.5 year sample of 59K routers that rebooted
 - 4% (2.3K) were SPoF
 - SPoF were mostly confined to the edge: 59% customer edge
- We released our code as part of scamper

https://www.caida.org/tools/measurement/scamper/

Backup Slides

Impact on IPv4 Services censys.io April 2017

Active Hosts	39,107	
HTTP	25,592	
HTTPS	6,321	
SSH	,277	
DNS	7,922	
SMTP	7,383	
IMAP	5,127	Email

We examined IPv4 prefixes for 5% sample of reboots where at least 90% of peers during router outage window.

Partial Withdrawals

50% of pairs had 1-2 peers withdraw prefix 10% of pairs had nearly all peers withdraw prefix

Activity for IPv4 prefixes in BGP

prefixes for 50% of the inferred router outages

Reboot Window Durations

Router + BGP outage correlation

Data processing pipeline

Inferring router position

(b) no interface addresses routed by Y appear in traceroute

Data Collection Summary

	8 Jan ' 5	18 Oct '16	24 Feb '17
	8 Oct ' 6	24 Feb '17	30 May '17
	(a)	(b)	(c)
Probing rate	100 pps	225 pps	200 pps
Interfaces	83K seen	I.IM seen	Dynamic. 2.4M
	Dec '14	Jun to Oct 'I6	in May '17
Responsive	every round	every round	every round
	~15 mins	~15 mins	~15 mins
Unresponsive	12-24 hours	12-24 hours	7-14 days

Why IPv6 fragment IDs? IPv4 ID values are 16 bits with bursty velocity as every packet requires a unique value.

At 100Mbps and 1500 byte packets. Nyquist rate dictates a 4 second probing interval

Soliciting IPv6 Fragment IDs

