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The Architecture of CoralReef:
An Internet Traffic Monitoring Software Suite

Ken Keys, David Moore, Ryan Koga, Edouard Lagache, Michael Tesch, and k claffy

I. Introduction

The volume and complexity of traffic on the Internet is
increasing rapidly, making it both more difficult and more
important to understand. To this end we have created the
CoralReef passive traffic monitoring suite, which can be
used by network users, administrators, and researchers to
measure and analyze network traffic. In this paper, we will
present the CoralReef design philosophy, overall architec-
ture, and capabilities.

The CoralReef architecture is organized primarily into
two “stacks” of software components, as shown in Figure 1,
plus a few other small utility components. The raw traffic
stack deals directly with individual PDUs (packets or cells)
read from a network traffic stream, and the flows stack
deals with traffic data that have been aggregated into “flow
intervals”. Each component of a stack builds upon the com-
ponents beneath it. Any level of either stack may serve as
a base upon which users may build their own software. The
API provides many features to perform the most commonly
needed operations, and many programming hooks to allow
the programmer to customize the behavior of the library
at any level. Except for the hardware-specific drivers, all
of the software components are portable to most POSIX
systems.

The core of the the raw traffic stack is the libcoral C
library. In order to allow programmers to write a single
application to access many types of data sources, libcoral
provides a consistent API for capturing traffic from special-
ized ATM and POS capture cards from multiple vendors,
as well as from pcap interfaces, while hiding the details of
the hardware and drivers from users who do not need or
want to see them. The same API is used to read packet
capture files in any Coral format (including NLANR for-
mats), pcap, and DAG [1] ATM and POS formats. All of
these data sources appear the same to the user, and can
even be read simultaneously. The libcoral API can operate
on ATM cells, blocks of cells, or link layer packets, one at
a time or via callbacks; the application developer can use
whichever is most convenient. To facilitate rapid prototyp-
ing and development, another design goal is to provide the
same API in C, C++, and Perl. Because the Perl module
CRL.pm directly calls the C routines, Perl scripts using
CRL.pm perform well enough for many practical applica-
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tions.

Several additional components are included to perform
auxiliary tasks as needed at any location in the stack struc-
ture. For example, there is a module for looking up IP
address prefixes in Border Gateway Protocol (BGP) rout-
ing tables to find their autonomous system (AS) num-
bers, and another for determining geographic locations via
NetGeo [2].

The flows stack includes modules for storage and ma-
nipulation of tables of frequently collected aggregate data.
Measurements of traffic volume in bytes, packets, and flows
can be aggregated by any combination of source and desti-
nation hosts, IP protocol, and ports. These modules pro-
vide methods to automatically aggregate data into tables
with different keys and allow for efficiently selecting en-
tries that represent the most traffic. For example, a single
method call will convert a table of byte and packet counts
aggregated by source AS number into a table aggregated by
source country. Higher level applications are written using
these building blocks; for example, a small Perl program
is sufficient to create a traffic matrix by IP address or AS
number, while larger programs (such as the realtime report
generator t2 report) are built from complex arrangements
of the same components.

II. Background and Related Work

To our knowledge, all existing tools for passive network
workload characterization support features that cover only
a subset of those covered by CoralReef. What makes
CoralReef unique is that it supports a large number of fea-
tures at many layers, and provides APIs and hooks at every
layer, making it easier for anyone to develop new applica-
tions with a minimum of duplicated effort.

CoralReef began its existence as a library and drivers for
monitoring ATM traffic from the same specialized hard-
ware used by OC3MON [3]. For its research, CAIDA
needed to monitor high volumes of ATM traffic simultane-
ously across multiple interfaces, each of which carried mul-
tiple streams of traffic (ATM virtual channels). OC3MON
hardware and related components served these needs while
few other tools did, but CAIDA research demanded more
general software than that used in OC3MON.

Specialized hardware is essential for monitoring high vol-
ume traffic. Several commercial products, such as Narus
IBI Platform [4] and Niksun NetVCR [5], use specialized
monitoring hardware on a dedicated node to tap a network
link. On the other hand, on links near the edge of the
network where volume is lower, it is usually more economi-
cal and practical to use the network interfaces provided by
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Fig. 1. Software components of CoralReef

the operating system on an existing node. Some tools can
use an operating system’s interfaces directly, and others use
libpcap [6] to access interfaces. However, few network mon-
itoring tools can make use of both specialized hardware and
built-in network interfaces. CoralReef tools can use both,
allowing their deployment anywhere on a network.

Many of the existing tools need to parse several layers of
low-layer protocols just to reach the higher layer protocol
in which they are actually interested. Operating systems
have layer 2 parsers built into their network interface code,
but not accessible to the programmer, and therefore useless
for dealing with layer 2 data from other sources. CoralReef
attempts to satisfy the need for a network analysis library
that can parse layer 2 protocols.

Some tools, notably Ethereal [7], Narus IBI Platform,
and libnids [8], parse layer 4 and higher protocols. All of
these perform TCP stream reassembly. CoralReef does not
currently provide an API for layer 4 reassembly.

CoralReef includes programs for generating flow data,
APIs for manipulating them, and tools for flow-based re-
port generation. Both NeTraMet [9] and NetFlow ex-
port [10] generate flow data. A powerful feature of
NeTraMet is that it supports a programming language for
defining flows. Because NetFlow export is supported by
multiple router vendors, it provides a convenient way to
obtain flow data without adding additional passive moni-
toring equipment to the network. Cflowd [11], combined
with the arts++ [12] library, collects and aggregates Net-
Flow data from routers and provide a programming API for
tables of flows and text reporting functionality. Tools for
graphical web-based flows reporting, in addition to those
in CoralReef, include FlowScan [13] and Fluxoscope [14].

III. Components of the Raw Traffic Software

Stack

A. Input Sources

CoralReef can read traffic data from custom device
drivers, trace files, and libpcap.

A.1 Device Drivers

CoralReef device drivers allow passive collection of data
from specialized collection hardware. CoralReef includes
FreeBSD drivers for Apptel POINT1 (OC3 and OC12

1Apptel has discontinued production of the POINT cards.

ATM) and FORE ATM (OC3 ATM) cards, and supports2

Linux drivers for WAND DAG (OC3 and OC12, ATM and
POS) cards.

All of the supported cards write traffic data into blocks
of memory, and generate an interrupt after filling a
block. CoralReef drivers use a block size of approximately
1 megabyte. Because of the large block size, the system
does not spend an undue amount of time handling inter-
rupts. Large blocks can also be written to disk more effi-
ciently than smaller ones.

A.2 Files

The ability to read traffic data from files allows
CoralReef applications to analyze traffic offline, and on
hosts other than that from which the data were collected.
CoralReef files contain version information that allows the
software to read data from files written by any past ver-
sion of itself. It can also read files written by NLANR [15]
or MCI [3] OC3MON software and dagtools [1] software.
CoralReef can identify NLANR and MCI files automati-
cally by the format of their header, but must be explicitly
told that a given file is in dagtools format.

A.3 Libpcap

While CoralReef was originally designed to analyze traf-
fic from ATM devices, it was apparent that its IP analysis
features would be useful on IP traffic carried over any phys-
ical medium or datalink protocol. By supporting libpcap as
a back end, the CoralReef library allows all IP applications
built on it to work on a large number of widely available
network interfaces with no change to the applications.

B. Libcoral

Libcoral is a C library that does the bulk of the work in-
volved in reading passive traffic from any of the sources
described in Section III-A. It is the base on which all
CoralReef applications are built. Applications that use
libcoral see a uniform programming interface to all sup-
ported source types, so they do not need to be rewritten
for each input source. In the future, when libcoral supports
new network card and monitor systems, existing applica-
tion programs that use libcoral will be able to use the new
sources with little or no change.

2The DAG drivers are not included in CoralReef, but are part of
the DAG software package [1].
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In CoralReef terminology a source is a device, network
interface, or file from which data are read. The concepts of
source and interface are kept separate for several reasons.
First, a trace file may contain data collected from multiple
interfaces. This is often the case when data were captured
from a pair of ATM devices that monitored both directions
of traffic. Second, the format of data from a particular type
of device is the same whether read directly from the device
or from a file created by recording data from the device.
Separation of format handling from I/O handling allows
the same format handling code to be used for a device and
for a file made from that device, and allows reading files on
platforms that do not support the devices from which the
files were made.

B.1 Sources

Internally, libcoral organizes source types into source type
switches that contain information on how to handle each
source, including:

• is live — whether the source is a file or live interface
• is buffered — whether the source does its own buffering
• is coral dev — whether the source is a CoralReef device
• init() — initialize the source
• read min() — read the minimum amount of data from a
specific interface of the source
• nextblk() — read a block of data from the source
• release() — free a queued block
• has buf() — see if source has readable buffered data
• stop() — stop capturing on the source
• close() — close the source

For the CoralReef device sources, the init function per-
forms the ioctl requests to upload firmware to the device
and initialize it according to requested parameters, and cre-
ates a single interface structure initialized to the appropri-
ate iface type switch and other settings. The nextblk func-
tion performs the ioctl request to get a Coral data block
pointer from the driver. All CoralReef device sources use
the same read min function, coral blk read min, which
calls nextblk and stores the Coral data block pointer
and other information on the interface structure. Since
CoralReef device sources do not queue blocks nor allow
reads of partial blocks, they do not have has buf or release
functions.

CoralReef files begin with a header that describes each
interface which produced the data in the file, including
the interface’s type and configuration options. These files
may contain data collected from any type of Coral device:
POINT, FORE, or DAG. The init function for CoralReef
files reads this information and uses it to create and ini-
tialize an interface structure for each interface recorded in
the file. The nextblk function reads a Coral data block
from the file into an allocated buffer. The read min func-
tion calls nextblk on the source until it gets a block for the
desired interface. But since a file may contain data from
multiple interfaces, nextblk may return a block from an in-
terface other than the one requested by read min. Each
time this happens, read min queues the block on the inter-
face structure to which the block belongs, avoiding the need

to seek within the file when data from the other interface
are needed later.

Unlike CoralReef files, files created by the dagtools soft-
ware do not contain CoralReef file headers or other identi-
fying information, so libcoral must be told explicitly that a
given file is a dagtools file and what parameters were used
to record it. The init function creates an interface struc-
ture and initializes it to DAG values and the user-specified
parameters. Coral block headers and boundaries are also
absent from files written by dagtools software, so nextblk
simply reads 1 MB worth of records into a buffer and treats
it as a Coral block. Thus the dagtools file switch can use
the same function as the Coral file switch for the read min
entry point.

The init function for pcap file and pcap live sources
calls the corresponding pcap initialization function and cre-
ates a single interface structure initialized to the appro-
priate iface type switch and other settings. Pcap sources
do not have Coral blocks, and thus no nextblk function.
Both types of pcap sources use the same read min func-
tion, coral pcap read pkt, which reads a single packet via
pcap dispatch and stores a pointer to it on the interface
structure.

B.2 Interfaces

Libcoral organizes information about handling interface
types into an iface switch for each type. Interface type in-
formation includes a description of the record layout and
functions to normalize timestamps and construct packets
from the data stored on the interface structure by the
source functions.

The record layout is used for interfaces that have Coral
data blocks. It describes the size of the records and the
locations of fields within the records. Access to fields of
different record formats is abstracted by macros that find
the fields using the record layout information in the iface
switch, hiding the layout details from the application pro-
grammer.

Each interface type has its own timestamp format. Func-
tions on the iface switch convert a timestamp to a canoni-
cal form, struct timespec, so higher level code does not
have to deal with the different formats. These functions
can also (optionally) automatically correct timestamp er-
rors generated by the device, e.g., the failure of the FORE
firmware clock to increment immediately upon a hardware
clock wrap. This error, if left uncorrected, would manifest
itself to higher software layers as a backward time jump of
approximately 2.6 ms followed a few cells later by a forward
jump of similar magnitude.

The prep pkt function prepares a (possibly incomplete)
packet from the data returned by the source functions. For
POS and pcap interfaces, preparation is trivial, since these
interfaces return packets. But for ATM interfaces, prepar-
ing a packet means performing AAL5 reassembly for each
virtual channel from the ATM cells in the Coral data blocks
returned by the source. Normally, reassembly requires ap-
pending a copy of each ATM cell to a buffer associated
with the virtual channel until the end of the AAL5 PDU
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(protocol data unit) is found or the maximum number of
captured cells per PDU are seen. But in the common case
where only one cell per PDU is captured, the reassembly
function can skip the expensive copy; the resulting packet
structure will point directly to the original cell contents
instead of to a buffer full of concatenated cell copies.

B.3 Traffic Reading Functions

There are three ways to read traffic from a CoralReef
source: by block, by cell, or by packet. Each of these meth-
ods can read data from multiple sources simultaneously.

Block reading works only on sources that operate on
Coral data blocks. It is implemented by calling nextblk
on a source whenever select() indicates that the source is
readable. Block reading is the most primitive interface and
is only used by a few applications, most notably crl trace,
which simply writes the blocks to a CoralReef trace file.

Reading by cells works only on ATM sources, and is
useful for applications that do ATM layer analysis; e.g.,
measuring traffic volume per virtual channel. Cell reading
functions manage Coral data blocks internally, and dole
cells out to the caller as requested.

The most widely used type of reading is by packet.
Libcoral’s packet API hides the details of the physical
layer from the application programmer. In this context,
“packet” means a layer 2 PDU, e.g., an Ethernet frame
or AAL5 PDU. The resulting packet structure includes a
subinterface identifier so the caller can distinguish separate
data streams within an interface. Currently, the only sup-
ported type of interface that has subinterfaces is ATM, for
which the subinterface identifier is the VPI and VCI. The
result may also include pointers to the header and trailer
of lower layer protocols (e.g., ATM cell header and AAL5
trailer) so the caller can access them if desired.

Traffic analysis applications usually need the raw data in
temporal order, and often need to perform periodic opera-
tions at fixed intervals, and stop processing after a specific
duration. To make application programming easier, libcoral
can take care of all these needs. Each interface returns its
own data in temporal order, but low-level buffering on the
interfaces means data read from multiple network inter-
faces will not be in the correct order. Reading from mul-
tiple interfaces is common on ATM network links, which
have separate interfaces for each direction of traffic. So,
the libcoral cell and packet reading functions have the op-
tion to automatically merge-sort the records they return
to the caller. Merge-sorting requires that libcoral have at
least some data from each interface; read min guarantees
that this requirement is met.

If the programmer specifies an interval, the libcoral traffic
reading functions compare the data timestamps to the in-
terval, and return control to the caller when they encounter
a timestamp beyond the end of the interval. Similarly, the
programmer can specify a duration, and the reading func-
tions will not return data with timestamps that exceed the
duration. All of these time features use data timestamps
generated by the source instead of the CPU clock so they
are not affected by buffering between the source and the

software, and even work on file sources. Libcoral also uses
the CPU clock to test duration, so even if all interfaces are
silent or buffering too long and thus not providing times-
tamps for comparison, libcoral will detect the duration ex-
piration and correctly stop reading.

Protocol parsing is another common feature required
by traffic analysis applications, so we put this feature
into libcoral. The “packets” returned by the packet
reading functions are usually layer 2 PDUs, which
may contain multiple sublayers of encapsulation. The
coral get payload function parses the encapsulating pro-
tocol and returns a pointer to the payload. If the
encapsulating protocol indicates that the payload con-
tains another sublayer recognized by libcoral, the func-
tion also returns the identity of its protocol. For conve-
nience, libcoral also includes coral get payload by layer

and coral get payload by proto, which recursively call
coral get payload on each enclosed PDU until it finds one
at a specified OSI layer or with a specified protocol, respec-
tively. The coral get payload by proto function is most
commonly used to easily find the IP layer, skipping all lower
sublayers. For example, a PPP packet read from an inter-
face might contain a BRIDGED LAN packet, which might
in turn contain an IEEE 802.3 packet, which finally con-
tains an IP packet; a programmer could reach the IP packet
with a series of conditions and calls to coral get payload

or with a single call to coral get payload by proto.
These functions can optionally print the protocol informa-
tion they parse, much like tcpdump [16] (although they do
not understand as many protocols as tcpdump). One major
advantage of libcoral over tcpdump is that libcoral provides
an API to access the protocols at any layer, instead of
just printing what it finds. Protocols recognized by libcoral
include ATM RFC1483 [17]; LANE for IEEE 802.3/Eth-
ernet [18]; Ethernet [19]; IEEE 802.3 [20]; Cisco HDLC;
PPP [21] over HDLC [22], [23] or Ethernet [24]; bridged
LAN (over PPP) [25]; IP [26]; ARP [27]; ICMP [28];
TCP [29]; and UDP [30]. If libcoral can not determine the
lowest level protocol of traffic on a device from the device
itself, the user must tell libcoral via a command line option
or configuration file. The user may configure each virtual
channel of an ATM interface as having a different protocol.

Another feature of libcoral frequently needed by traffic
analysis applications is traffic filtering. When reading from
ATM interfaces, libcoral can filter by VPI and VCI, as con-
figured by the user. Filtering is useful for eliminating sig-
naling channels or other uninteresting traffic at an early
stage. Using libpcap, libcoral can also filter packets with
BPF [31] filter expressions. Most filter expressions need
only the IP and transport header, which usually fit within
the first ATM cell of an AAL5 PDU unless IP options are
used. McCreary [32] has observed that only 0.003% of IP
packets contain options. Since the first cell usually contains
sufficient information for the filter, libcoral can apply the
BPF filter to the piece of the packet contained in the first
cell before doing AAL5 reassembly. To do this, libcoral uses
a slightly modified BPF interpreter that indicates not just
“pass” or “fail,” but also “packet was too short to tell.” In



THE ARCHITECTURE OF CORALREEF/TALK 17 5

the last case, typically caused by IP options pushing the
transport header out of the first cell, libcoral will reapply
the filter against the fully reassembled packet. When the
filter drops a large fraction of the packets before reassem-
bly, libcoral avoids a significant amount of unnecessary re-
assembly overhead.

There are many configurable parameters for using
libcoral: protocol specifications for interfaces, interval, du-
ration, length of packet to capture, filters, diagnostic ver-
bosity, etc. Libcoral has functions to read these options
from the command line or a configuration file. These
functions save work for the application programmer, and
presents application users with a means of configuration
that is consistent across all applications.

C. Perl API

The Perl module CRL.pm provides a Perl interface to
libcoral via the SWIG [33] interface generator, allowing pro-
grammers to call its functions from Perl. It also includes
several convenience functions for performing common ac-
tions, such as opening all input sources and setting default
reading options, or extracting IP-level data from a packet
or cell. CRL.pm uses the libcoral C library as a back end
because much of its functionality would be difficult or im-
possible to implement in Perl, and implementing the rest
of it would be a needless duplication of effort.

While programmers using libcoral can simply use C struc-
tures to access packet headers and other CoralReef-specific
structures, native Perl techniques to access these structures
are not sufficient to deal with the large volumes of data en-
countered in traffic analysis. The Unpack.pm Perl module
provides a Perl interface to these structures through SWIG,
which is both more convenient and several times more ef-
ficient than a Perl implementation would be. The Unpack
library gives the programmer the ability to access individ-
ual fields in packet data, and can also do other useful field
manipulations, such as converting IP addresses from binary
to a string format.

D. Raw Traffic Applications

All raw traffic applications included in CoralReef have
names beginning with “crl ”, and accept the common con-
figuration options defined by libcoral. CoralReef includes
applications to capture raw PDUs to a file, convert trace
files to other formats, filter traffic, print packets, analyze
timestamps, monitor for security problems, collect DNS us-
age statistics, and more. One of the applications, crl flow,
aggregates raw traffic data into flow data for use by the
flows software stack. We will describe it further in sec-
tion IV.

IV. Components of the Flows Software Stack

While the raw traffic stack provides access to network
data in the most detailed manner, often one does not need
so much detail. To make certain kinds of data more man-
ageable, CoralReef has a flows stack that aggregates data
across time based on the flow to which they belong.

The CoralReef flows stack has many container objects,
discussed below. Figure 2 shows the relationships among
the objects and concepts used in the flows stack.

A flow is loosely defined as the set of packets that have
common values of certain network related fields (keys). The
specific keys of interest vary with the type of analysis, but
are usually a subset of IP addresses, port numbers, IP pro-
tocol, AS numbers, network prefixes, and geographic loca-
tions (all except IP protocol apply to the traffic’s source,
destination, or both). A specific set of keys defines a spe-
cific FlowType.

Information about an individual flow is stored in a set
of values called a Counter. In the most common case these
values are just cumulative counters of the number of pack-
ets and bytes seen in a flow. However, a Counter may
also contain averages and other more generalized types of
values. A specific set of values used in a Counter and an
“add” function for updating those values defines a specific
CounterType.

The flows stack stores a set of flows and their associated
Counters in a Table. This generic Table is the main data
structure used by the flows stack. A specific type of a Table,
defined by the FlowType and CounterType it contains, is
called a TableType.

To make flow data management easier and to allow
meaningful comparison of aggregated data, the flows stack
organizes groups of Tables into Intervals. An Interval is a
container for all flows on all interfaces and subinterfaces for
a fixed time period. Within an Interval there is a Table for
every combination of (sub)interface and TableType being
collected or processed. In this manner, an Interval rep-
resents a snapshot of all collected network traffic for that
time period.

The CoralReef flows stack is composed of programs that
generate Intervals of Tables of flows, and libraries for read-
ing, writing, and processing them.

A. Flow Generation

Flows can be created using CoralReef in many differ-
ent ways, but the most commonly used flow generation
program is crl flow. This program produces flows based
on a FlowType of a 5-tuple of source IP address, destina-
tion IP address, IP protocol, source port, and destination
port. For ICMP packets, the type and code are used in-
stead of the source and destination ports. Additionally,
crl flow records when the source and destination ports
are not known, either because they are not meaningful for
the given protocol or because they were not captured. A
situation where port information is not captured occurs, for
example, when only the first ATM cell is captured and IP
options push the inner layer 4 PDU header beyond the first
48 bytes. The information recording that the ports are
undefined is kept in an additional field of the flow, called
ports ok, which sometimes leads to flows being referred
to as 6-tuples since they have 6 fields in the FlowType.
The crl flow program can also generate flows based on a
FlowType of the IP packet length, which it outputs as a
separate Table. By using the packet length FlowType, a
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Fig. 2. Objects and concepts used in the Flows Stack

user can readily determine the number of packets and bytes
seen for different sized packets. The CounterType that
crl flow uses to record flow data contains normal coun-
ters for the number of packets and bytes in a flow, and two
fields that are not really counters at all: the timestamps of
the first packet and most recent packet in a flow.

There are four primary methods of expiring flows: fixed
timeout, adaptive timeout, protocol based, and time buck-
eted. These methods may also be combined to differing
extents. With a fixed timeout method [34], a flow is expired
when some fixed time period has elapsed since a packet was
seen matching this flow (e.g., waiting 60 seconds after see-
ing the most recent packet). Adaptive timeout [35] is like
fixed timeout, but the time period is dynamically chosen
for this flow based on its previous behavior (e.g., waiting
6 times the average interarrival time of packets previously
seen in this flow [36]). In protocol based expiry, a flow is ex-
pired due to observation of a protocol specific message (e.g.,
TCP FIN or RST). Time bucketed expiry expires all flows on
a fixed time interval that is external and independent of the
traffic (e.g., every five minutes from the start of the trace).
Expiring with a time bucketed method is useful when the
amount of traffic on a link in a given time window must be
known accurately. Without time bucketed expiry, the traf-
fic rate of a flow must be averaged over its entire lifetime to
make time series plots of link utilization [13], [14]. When
average rates are used to compute total traffic values, it is
possible for the totals to exceed the link capacity or pro-
duce other unexpected results. In general, time bucketed
expiry is more useful when studying the traffic characteris-
tics of a link over a specific period, and non-time bucketed
expiry is more useful when studying the characteristics of
individual flows.

The crl flow program currently supports fixed timeout,
some specific kinds of adaptive timeout, and time buck-

eted expiry. For the fixed timeout expiry, the user speci-
fies the number of seconds to wait. Time bucketed expiry
uses the interval functionality of the raw traffic stack to
periodically expire all flows. There are two adaptive time-
out mechanisms, each of which takes two parameters. The
first is based on a new adaptive timeout mechanism from
NeTraMet [36], in which a flow is not expired at all dur-
ing the first N seconds, but after that point a packet must
arrive within M times the average interarrival time pre-
viously seen in that flow. The second adaptive timeout
mechanism requires that a packet arrive within M times
the last seen interarrival time, which defaults to N seconds
when only one packet has been seen.

Once generated, flows are usually further analyzed with
tools written using the Interval processing APIs.

B. Interval Handler

The CoralReef flows stack groups flow data into fixed
time periods called Intervals. The time period for an In-
terval is used for reporting of flows, and need not be related
to timeouts used for flow expiry. An Interval contains data
for all flows that expired in the time period, and optionally
for flows that are still active at the end of the time period.
The sets of flows are each held in a Table, with separate
Tables for active and expired flows, per (sub)interface and
per TableType. For example, when reporting both active
and expired flows in two TableTypes (e.g., 5-tuples and IP
packet lengths) on an ATM link with 10 virtual channels
there would be up to 40 Tables per Interval.

Within an Interval, there is meta-information describ-
ing the interval’s beginning time and duration, as well as
additional meta-information specific to each (sub)interface
it contains. Meta-information for each (sub)interface in-
cludes the number of IP packets, IP bytes, and PDUs with
unknown encapsulation, as well as timestamps for the first
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and most recent IP packet seen.
To improve efficiency in reading and processing, the

meta-information for an Interval appears at the begin-
ning, and is followed by the Tables of flows in the same
order as specified in the meta-information. If any of the
(sub)interfaces contain more than one TableType, then all
of the Tables for that (sub)interface are grouped together.

The CoralReef flows stack provides APIs for reading,
writing and manipulating Intervals. Operations provided
by the Interval APIs include:
• reading or writing an entire Interval of Tables
• reading or writing an Interval incrementally
• reading only a requested subset of TableTypes from a file
• automatically creating a requested TableType that is not
in the file if there is a Table from which it can be derived
• accessing Interval meta-information
• accessing (sub)interface data
• accessing Tables within Interval (sub)interfaces

By moving commonly performed data manipulation op-
erations into a library, the CoralReef flows stack simplifies
the design of flows analysis tools. In providing a mecha-
nism, Intervals, for organizing and processing flow data,
CoralReef makes processing, analyzing and storing flow
data convenient and efficient.

C. Tables and Counters

In the CoralReef flows stack, a Table is a container for
flows and associated data values, called Counters. In ad-
dition to simple gettor/settor operations, the Table API
provides functionality for data aggregation and report gen-
eration.

Tables of a given TableType can be converted easily to
another TableType by transformation of the flow keys. The
associated Counters are combined to produce the aggre-
gated result. For most CounterTypes this just involves
adding the respective fields of the combining Counters. The
simplest Table aggregation is the removal of key fields from
the FlowType. For example, a 5-tuple Table can be aggre-
gated directly to an IP-matrix Table, which uses source and
destination IP addresses as its keys. More complicated ag-
gregations available through CoralReef include mapping IP
addresses to AS numbers via a routing table, and mapping
IP addresses or AS numbers to countries.

On most production networks, the number of flows seen
will be large for any time period longer than a couple sec-
onds, thus making it difficult to pick out more important
or interesting flows. To help identify “large” flows, the Ta-
ble API has sorting functions which select flows based on
Counter fields. For example, using a simple CounterType
with sums of packets and bytes, selecting the 25 largest
flows by bytes is a single operation.

General operations supported in the Table API include:
• inserting a new flow with an initial Counter
• updating the Counter of an existing flow
• extracting the Counter associated with a flow
• walking all of the flows in the Table
• sorting the flows by fields in their Counter, in increasing
or decreasing order

• sorting partially by Counter fields (“top N” or “bot-
tom N” flows)
• adding two Tables of the same TableType
• aggregating into a new TableType by a transform of the
flow keys
• accessing a “total” Counter for the Table which is a sum
of the Counters for all contained flows
• writing or reading a Table directly as text or binary

At the time of this writing, the Table API is only fully
available within Perl. However, there are C++ backends
for 18 common FlowTypes and a basic Counter that counts
packets, bytes, flows and timestamps3. Other FlowTypes
or CounterTypes are handled entirely in Perl. Work is
ongoing to provide STL versions of Tables for use by C++
tools.

V. Other Software Components

CoralReef includes a stand-alone library called ASFinder,
which maps IP addresses to AS numbers and network pre-
fixes. The API is in Perl, but the actual search code is
written in C++ and utilizes a Patricia trie, which makes
it both fast and memory-efficient. In order to make these
mappings, ASFinder must first have loaded a file contain-
ing a sorted list of network prefixes and AS numbers.

To create input files for ASFinder, CoralReef includes
scripts that convert the output of a Cisco router’s “sho ip

bgp” command or the output of mrtd [37] into the format
ASFinder uses.

Also included in CoralReef is the NetGeoClient [2] li-
brary, which maps AS numbers and IP addresses to their
geographic locations. These are used by several CoralReef
applications, notably t2 ASMatrix.

VI. Conclusion

While CoralReef comes with many traffic analysis ap-
plications, its biggest strength is the flexibility and power
of its libraries and components, which make it an excellent
base upon which to build new applications. Some examples
of actual CoralReef use are described below.

Published research that has taken advantage of
CoralReef includes studies of characteristics of fragmented
IP traffic [38] and trends in wide area IP traffic pat-
terns [32]. Current work at CAIDA using CoralReef in-
cludes studies of distributed denial of service attacks, use of
DNS root servers, and prevalence of plaintext passwords.

At least two existing traffic analysis applications,
NeTraMet [9] and Vern Paxson’s Bro [39], have been
adapted to use the libcoral API to run on specialized ATM
and POS hardware that they did not previously support.

CAIDA uses CoralReef continuously to generate real-
time graphs of traffic loads [40].

CoralReef has also been used as a teaching tool in net-
working classes by Evi Nemeth and Geoff Voelker and on
the CAIDA Traffic Analysis Teaching CD [41].

3C++ backends for Tables and Counters are currently only avail-
able to CAIDA members
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The CoralReef package is available for download at
http://www.caida.org/tools/measurement/coralreef/.
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