
THE CORALREEF SOFTWARE SUITE AS A TOOL FOR SYSTEM AND NETWORK ADMINISTRATORS 1

The CoralReef software suite as a tool for system
and network administrators

David Moore, Ken Keys, Ryan Koga, Edouard Lagache, and k claffy

Abstract— Until now, system administrators have lacked
a flexible real-time network traffic flow monitoring pack-
age. Such a package must provide a wide range of services
but remain flexible enough for rapid in-house customization.
Existing passive data collection tools are typically narrow
in scope, designed for specific tasks from packet capture
(tcpdump [1]) to accounting (NeTraMet [2]). In response,
CAIDA has created the CoralReef suite designed to provide
network administrators and researchers with a consistent
interface for a wide range of network analysis applications,
from raw capture to flows analysis to real-time report gen-
eration. CoralReef provides a convenient set of passive data
tools for a diverse audience.

CoralReef is a package of device drivers, libraries, classes,
and applications. We briefly outline the architecture and
provide relevant case studies and examples of CoralReef’s
use as applied to real-world networking situations. We will
show how CoralReef is a powerful, extensible, and convenient
package for network monitoring and reporting.

I. Introduction

With the growth in traffic volume and increasing diversity
of applications on the Internet, understanding and manag-
ing networks has become increasingly difficult and impor-
tant. To this end we have created the CoralReef passive
traffic monitoring suite, which allows network users, admin-
istrators, and researchers to measure and analyze network
traffic. The CoralReef software suite is a comprehensive col-
lection of tools devloped by CAIDA to collect, store, and
analyze traffic data. CoralReef can be deployed on a dedi-
cated monitor host using data capture cards that tap a fiber
optic link, or on virtually any UNIX system without special
hardware using libpcap interfaces. CoralReef software han-
dles everything from the low level details of cell and packet
capture to the production of high level HTML reports in
near real-time. Network and system administrators can use
the CoralReef suite to monitor and interpret a wide range of
observed network behavior.

CoralReef evolved from OCXmon monitors, developed
jointly by MCI and NLANR [3][4]. The OCXmon moni-
tors ran on MS-DOS, could only monitor ATM links, and
provided only basic cell capture (in device-dependent for-
mat) and limited flow summary capability. CoralReef runs
on UNIX, and supports device independent access to net-
work data from OCXmon hardware, native OS network in-
terfaces, and trace files; programming APIs; a variety of
bundled analysis applications; and greater flexibility in re-
mote access and administration. CoralReef is developed and
tested under FreeBSD, Linux, and Solaris, although special-
ized hardware drivers are not available for all operating sys-
tems. CoralReef has two releases, a “public” non-commercial

CAIDA, San Diego Supercomputer Center, University of California,
San Diego. E-mail: {dmoore,rkoga,kkeys,elagache,kc}@caida.org.
Support for CoralReef is provided by DARPA NGI Contract

N66001-98-2-8922, DARPA NMS Grant N66001-01-1-8909, and by
CAIDA members.
This is an updated version of a paper that was originally published

in Proceedings of the 15th Systems Administration Conference (LISA
2001). This work is copyright 2001 by the authors. The USENIX As-
sociation holds an exclusive right to publish this article until Decem-
ber 2002. Permission is granted for the noncommercial reproduction
of the complete work for educational or research purposes after this
time.

use version and a version available only to CAIDA members.
Both versions implement the same set of libraries and APIs,
but the members-only version incorporates performance and
operational enhancements geared toward CAIDA members.
What makes CoralReef unique is that it supports a large
number of features at many layers, and provides APIs and
hooks at every layer, making it easier for anyone to apply
it in unanticipated ways and develop new applications with
minimum duplicated effort.
Because commercial software tools lack sufficient flexi-

bility, network administrators often develop their own net-
work analysis tools, typically based on tcpdump [1]. A part
of tcpdump is the library libpcap [5] which provides a stan-
dard way to access IP data and BPF (Berkeley Packet Filter)
devices. The tcpdump tool also has a packet data file for-
mat (pcap) which has become a de facto industry standard.
Several network analyzer tools are built on top of libpcap,
such as the Ethereal [6] protocol analyzer and NeTraMet
(RFC 2722 [7] and RFC 2724 [8]), which are geared to-
ward long term collection for metering and billing. Other
network analysis tools include the MEHARI [9] ATM/IP
analysis system; Narus [10] for long-term workload and
billing; the DAG ATM/POS capture cards and software [11]
by the WAND group at the University of Waikato, New
Zealand; Clevertool’s netboy [12]; Network Associates Snif-
fer Pro [13]; and NIKSUN’s NetVCR [14].
This paper describes version 3.5.0 of the CoralReef suite.

Section II presents an overview of CoralReef libraries, appli-
cations, and their relationships. In section III we describe
how to set up a CoralReef monitor. Section IV contains mul-
tiple examples of using CoralReef to answer realistic network-
ing questions. Section V describes the continuous HTML
report generation capabilities of CoralReef. Finally, we con-
clude the paper in section VI with a summary.

II. An overview of the CoralReef software suite

CoralReef is a package of libraries, device drivers, classes,
and applications written in, and for use with, several pro-
gramming languages. The overall architecture and program-
ming interfaces are described in a separate paper[15] and are
not covered here. Figure 1 shows an overview of the relation-
ships between CoralReef applications. Detailed descriptions
of the software tools can be found at the CoralReef web site
(http://www.caida.org/tools/measurement/coralreef/).
Most CoralReef applications fall into one of two categories:

those with names beginning with “crl ”, which operate on
raw packet data; and those with names beginning with “t2 ”,
which operate on aggregated flow data. We will refer to
these groups of applications as crl * and t2 *, respectively.
Sources of raw data include custom Coral drivers for special
collection cards, the libpcap library for commodity network
interfaces, and trace files generated by crl trace, tcpdump, or
other software.

A. Raw traffic applications

All of the crl * applications take a common set of com-
mand line and configuration options. These options include
stopping after a specified number of packets or ATM cells
or after a specified time duration; link specific parameters;
filtering by ATM virtual channels; number of bytes to cap-
ture from each packet; and debugging level. Additionally,
applications that operate on packets can filter their input
with BPF (tcpdump) filter expressions. Applications that op-
erate at regular time intervals have a common syntax for

THE CORALREEF SOFTWARE SUITE AS A TOOL FOR SYSTEM AND NETWORK ADMINISTRATORS 2

CoralDevice

-Dag Card (ATM, POS)
-Fore Card (ATM)
-Point Card (ATM)

crl_trace
crl_flow

crl_to_pcap

raw traffic
applications

crl_bycountry
crl_rate
crl_rate_layer2
crl_print_pkt
...

table conversion/
aggregation

t2_new_convert
t2_ASmatrix
...

pcap applications

tcptrace
tcpdump
dsniff
...

.crl

.t2

.pcap

libpcap interface

-ethernet
-FDDI
-PPP
-POS
-ATM
-...

.pcap

table
summaries/
flow reports

t2_report
t2_ts
t2_top
...

Fig. 1. Overview of CoralReef Applications

specifying the interval size.
Pure utilities:
• crl trace — captures network traffic to a .crl trace file
• crl info— reports hardware and link configuration details
of a trace file
• crl time — outputs timestamps and inter-arrival time in-
formation for packets or ATM cells
• crl encode — encodes the IP addresses in a .crl file to
protect privacy
• crl to * — captures network traffic or converts trace files
to other file formats
Simple tools:
• crl print — prints headers and payloads of ATM cells
• crl print pkt — prints multiple layers of protocol headers
and payloads of packets
• crl rate layer2 — at regular time intervals, outputs cell
count and bit rate for each ATM channel
• crl rate — at regular time intervals, outputs IPv4 and
IPv6 packet and byte counts, and counts of non-IP packets
Static Reports:
• crl hist — reports packet and byte counts by IP length
and protocol, port summary matrices for TCP and UDP,
fragment counts by protocol, packet length histograms for
the entire trace and for a list of applications, and the top
10 source and destination port numbers seen for TCP and
UDP traffic
• crl bycountry — reports the amount of traffic flowing to
and from networks, and between networks, ASes, and coun-
tries
Specialized Utilities:
• crl portmap — captures all packets from any hosts that
connect to another host’s portmap port
• crl flow — at regular time intervals, aggregates packet
data into flows by source and destination IP addresses, pro-
tocol, and source and destination ports

B. Traffic flow applications

The t2 * applications operate on tables generated by
crl flow or other t2 * applications, with the same time in-
tervals.
• t2 report— generates HTML summary reports (described
in Section V)
• t2 ASmatrix — with a routing table (described in Sec-
tion V), aggregates by source and destination Autonomous
System numbers and source and destination ports
• t2 top — sorts a table by packets, bytes, or flows, and
displays the top N entries

• t2 rate — outputs counts of IP packets, bytes, and flows
• t2 convert — aggregates a table by specified keys

C. Other applications

• crl to pcap — converts Coral traces or live data to pcap
format for use with existing libpcap tools
• parse bgp dump — converts Cisco router “sho ip bgp” out-
put to the routing table format used by t2 ASmatrix,
t2 report, and crl bycountry
• parse bgp mrtd— converts MRTd[16] output to the routing
table format used by t2 ASmatrix, t2 report, and crl bycountry

D. Libraries

• libcoral — reads trace files and live network interfaces,
and provides common functionality for all crl * applications
• Coral.pm — perl interface to libcoral
• ASFinder—maps IP addresses to AS numbers and network
prefixes
• AppPorts — maps protocols and port numbers to applica-
tion names
• NetGeoClient — maps IP addresses and AS numbers to
geographic locations
• Tables — manipulating and processing the tables used by
the t2 * applications

III. Using CoralReef in an operational setting

CoralReef can only monitor traffic that is visible to a net-
work interface. If the network you want to monitor is a
shared medium such as non-switched Ethernet or FDDI, any
interface on that network is sufficient. Monitoring a link be-
tween routers or on a switched network requires directing
traffic into additional dedicated interfaces, which may be
either standard interfaces read via libpcap, or special hard-
ware accessed through Coral drivers. A link can be tapped
either with a physical splitter (Figure 2a) or by configuring
a span or mirror port on the appropriate switch or router
(Figure 2b). Note that tapping both directions of a link with
splitters requires a dedicated interface for each direction.
The hardware needed depends on the utilization of the

links being monitored and the amount of aggregation de-
sired. For straighforward packet traces, the main constraint
is usually disk performance and capacity; we recommend
ultra-wide SCSI rather than an IDE drive. For flow collec-
tion and analysis, memory and CPU speed are more impor-
tant. Individual applications in a CoralReef pipeline can run

THE CORALREEF SOFTWARE SUITE AS A TOOL FOR SYSTEM AND NETWORK ADMINISTRATORS 3

CoralReef
Monitor

(a)

CoralReef
Monitor

Span
Port

(b)

Switch*

*

*

Passive Monitor Card

NIC NIC NICNIC NIC

*
NIC Network Interface Card

router

router

NIC

NIC NIC

NIC

Fig. 2. Examples of tapping a link

on separate machines to distribute the load. A common ex-
ample of this is to run crl flow on the monitor machine and
t2 report on a different machine.

IV. Examples

In this section, we briefly present examples of using
CoralReef in an operational setting. A more complete out-
line of uses can be found in the CoralReef documentation or
the user community mailing list.
Several -C options are common to all crl * applications.

In the following examples, we use -Ci=time to specify the re-
peated interval at which the application processes data and
outputs results, and -C’filter expression’ to specify a BPF
filter expression that selects the packets to be measured.
To stop the applications after a specific duration, you would
use the -Cd=time option. The crl * applications can read
traffic from a variety of sources; in these examples, the data
source is “if:fxp0”, a native Ethernet interface (fxp0) read
via libpcap.
IP addresses in the sample outputs have been encoded for

privacy. Some output has been edited to better fit the page
and for illustrative value.
Timestamps in application output are printed in UNIX

timestamp format.

A. Using crl rate to check utilization of subinterfaces

The crl rate application counts packets and bytes on in-
terfaces and subinterfaces at regular intervals. On Ethernet
interfaces, subinterfaces are IEEE 802.1Q VLANs. On ATM
interfaces, virtual channels are reported as subinterfaces.
Other types of interfaces do not have subinterfaces.

A.1 Goal: continuously measure traffic on a link, in packets and
bytes.

Command line:

crl_rate -Ci=10 if:fxp0

Sample output: See listing 1.
Explanation: This output shows that there was traffic on
7 VLANs on Ethernet interface fxp0 in a 10 second pe-
riod. A similar table would be printed every 10 seconds.
The “non ip” column counts packets of protocols like ARP,
AppleTalk, and IPX. The total IPv4 traffic on this link in
10 seconds was about 99.5 Megabytes, or 79.6 Megabits per
second. Note that the bytes counted are those in layer 3
and above; bytes in lower layer encapsulations like Ethernet
and ATM are not counted.
This simple example is a good way to test your CoralReef

monitor and software setup to verify that the output
matches your expectations.
There was only one interface in this example, labeled 0 in

the output, but it is possible to monitor multiple interfaces
simultaneously.

A.2 Goal: find out how much KaZaA traffic is on your link.

Command line:

crl_rate -s -Ci=300 -C’filter port 1214’ if:fxp0

Sample output: See listing 2.
Explanation: In this example, we were not interested in
subinterfaces (VLANs), so we used the -s option to omit
them. Because of high variability in these kinds of mea-
surements, larger intervals are usually more useful. In this
example, we used a 5 minute interval. To limit the measured
traffic to KaZaA[17], we used a BPF filter to match only traf-
fic to or from KaZaA’s well-known port (1214). In the first
of the two intervals shown, there were about 1.33 Gigabytes
of KaZaA traffic, or 35.5 Megabits per second.

B. Using crl flow to collect flow data

The crl flow application summarizes data by IP flows. In
this context, a flow is identified by the 5-tuple of source
address (src), destination address (dst), protocol (proto),
source port (sport), and destination port (dport). A flow
is unidirectional, so there will be one flow for each of the
two directions of a network connection, with sources and
destinations swapped.
The definition of flow termination can be chosen by a

command line option. The -I option specifies that flows ter-
minate at the end of each interval, which is the most useful
definition for this kind of continuous monitoring. Other defi-
nitions are typically more useful in offline analysis of historic
data, as is often needed in research situations.
A table of these 5-tuples, along with counts of packets,

bytes, and flows for each, is called a Tuple Table. The “ok”
column contains a 1 if sport and dport are meaningful for
the protocol and were not truncated by capturing too few
header bytes. Ports are meaningful for TCP, UDP, and
ICMP (for ICMP, the sport and dport columns actually con-
tain ICMP type and code, respectively).

B.1 Goal: continuously collect data on link use, summarized by
hosts, protocols, and ports.

Command line:

crl_flow -I -h -Ci=10 if:fxp0

Sample output: See listing 3.
Explanation:
The -h option tells crl flow to print in human-readable

format. With no formatting option, crl flow prints a tab-
separated format more suitable for input to other scripts.
Additionally, crl flow -b outputs a binary format that is
readable by the t2 * applications, more efficiently than ei-
ther of the text formats.
The output shown here has been edited to fit the page.

Real output would have a Tuple Table for each interface and

THE CORALREEF SOFTWARE SUITE AS A TOOL FOR SYSTEM AND NETWORK ADMINISTRATORS 4

time 1001975450.054545 (10.000000), packets lost: 0

if[subif] v4pkts v4bytes v6pkts v6bytes non_ip v4pkts/s v4bits/s v6pkts/s v6bits/s

0[135] 1 40 0 0 0 0.10 32.00 0.00 0.00

0[110] 2269 2536140 0 0 0 22.69 2.03M 0.00 0.00

0[169] 9397 3761410 0 0 0 93.97 3.01M 0.00 0.00

0[170] 40097 20640233 0 0 0 400.97 16.51M 0.00 0.00

0[130] 5659 1921566 0 0 0 56.59 1.54M 0.00 0.00

0[131] 118429 70553909 0 0 0 1.18k 56.44M 0.00 0.00

0[108] 1774 92307 0 0 0 17.74 73.85k 0.00 0.00

0 TOTAL 177626 99505605 0 0 0 1.78k 79.60M 0.00 0.00

...

Listing 1

crl rate output: traffic on a link.

time 1001977053.013038 (300.000000), packets lost: 0

if[subif] v4pkts v4bytes v6pkts v6bytes non_ip v4pkts/s v4bits/s v6pkts/s v6bits/s

0 TOTAL 1999660 1330861215 0 0 0 6.67k 35.49M 0.00 0.00

time 1001977353.013038 (300.000000), packets lost: 0

if[subif] v4pkts v4bytes v6pkts v6bytes non_ip v4pkts/s v4bits/s v6pkts/s v6bits/s

0 TOTAL 1956821 1215396030 0 0 0 6.52k 32.41M 0.00 0.00

...

Listing 2

crl rate output: KaZaA traffic.

crl_flow output version: 1.0 (pretty format)

begin trace interval: 1001981488.441461

trace interval duration: 10.000000 s

Layer 2 PDUs dropped: 0

IP: 101.8403 Mbit/s

Non-IP: 0.0000 pkts/s

Table IDs: 0[131], 0[108], 0[130], 0[110], 0[170], 0[169]

...

begin Tuple Table ID: 0[131]

expired flows

#src dst proto ok sport dport pkts bytes flows

0.1.0.8 1.82.0.1 17 1 53 53 2 497 1

0.1.0.14 0.44.0.1 6 1 80 2223 4 646 1

0.3.0.148 1.95.0.1 6 1 1214 62772 125 187008 1

0.1.1.93 0.71.0.6 6 1 49200 80 3 565 1

0.1.1.93 0.71.0.6 6 1 49199 80 5 647 1

0.1.1.93 0.71.0.6 6 1 49198 80 5 647 1

0.1.1.93 0.71.0.6 6 1 49196 80 6 708 1

0.1.2.59 11.88.0.1 6 1 51643 80 6 817 1

...

end of text table

...

end trace interval

...

Listing 3

crl flow output: Continuous data collection.

THE CORALREEF SOFTWARE SUITE AS A TOOL FOR SYSTEM AND NETWORK ADMINISTRATORS 5

subinterface, repeated every 10 seconds; an interface or
subinterface summary preceding each table; and two addi-
tional columns in each table showing the first and last packet
timestamp observed within each flow. Remember that IP
addresses have been encoded for privacy.
The sample output shows one UDP DNS flow (protocol

17, port 53), one HTTP flow from a web server to a client,
several HTTP flows from clients to web servers, and one
large flow on TCP port 1214 (KaZaA).

C. Using t2 * to monitor utilization and flows

Although crl flow does some aggregation, its output is
still typically too voluminous to be directly useful. The t2 *
applications further aggregate or filter the output of crl flow
for more specific needs. In particular, t2 rate -s outputs a
single line per interval summarizing the packets, bytes, and
flows observed. t2 top sorts table entries by packets, bytes,
or flows, and prints only the top N.
Most t2 * applications accept different table types as in-

put, and can identify the table type of their input automati-
cally. crl flow outputs a Tuple Table; we will introduce other
table types in later examples.

C.1 Goal: continuously measure traffic on a link, in packets, bytes,
and flows.

Command line:

crl_flow -I -b -Ci=10 if:fxp0 | t2_rate -s

Sample output: See listing 4.
Explanation: In this example, t2 rate prints a line for every
10 second interval, the beginning of which is indicated in the
first column (time). The next three columns show the total
number of packets, bytes, and flows observed during the
interval. The “entries” column shows the number of table
entries, which, in the case of a Tuple Table, is equal to the
number of flows. The last three columns show the average
number of packets, bytes, and flows per second during the
interval.
The -b option to crl flow tells it to output in efficient bi-

nary format readable by t2 * applications. The use of this
option can drastically improve performance, and is recom-
mended when the intermediate output does not need to be
read by a human.

C.2 Goal: continuously find flows consuming the most bandwidth on
a link.

Command line:

crl_flow -I -b -Ci=10 if:fxp0 | t2_top -Sb -n5

Sample output: See listing 5.
Explanation: The “KEYS” columns are the same as the keys
in the input table, which in this example is a Tuple Table
from crl flow. The -Sp, -Sb, or -Sf option tells t2 top to sort
by packets, bytes, or flows, and the -n option specifies how
many entries to print.

D. Using t2 * to find hosts generating the most traffic

Often we want to aggregate the flows of a Tuple Table by
a subset of its keys. For example, we may want to count
the bytes sent between pairs of hosts, regardless of their
protocols and ports; or, all the packets sent from a particular
TCP port, no matter what host sent or received them.
In addition to the Tuple Table, CoralReef has other table

types defined by different sets of keys. For example, the
keys of an IP Matrix are source and destination IP addresses,
and the key of an IP Table is a single IP address. Table 1
shows all tables and their keys.
The t2 convert application converts one table type to an-

other by aggregating entries with common keys. A conver-
sion operator determines which subset of input table keys
to use as the keys of the output table. For example, ap-
plying the src IP Table operator to a Tuple Table generates
an IP Table whose keys are the source addresses of the in-
put table. The pkts, bytes, and flows counts of each entry

in the new table are the sums of the corresponding counts
of the Tuple Table entries with the same source IP address.
Figure 3 shows all the operators that can be applied to the
various table types.

D.1 Goal: find the top 5 hosts by bytes of traffic generated

Command line:

crl_flow -I -b -Ci=10 if:fxp0 |
t2_convert src_IP_Table |
t2_top -Sb -n5

Sample output:

#KEYS pkts bytes flows
(top 5 sorted by bytes)
0.4.0.27 16035 22534236 1
0.4.0.21 12202 13663537 46
0.4.0.30 2965 4230700 1
0.4.0.44 3647 3919348 1
0.4.0.4 1831 2702668 1
end of text table
#KEYS pkts bytes flows
(top 5 sorted by bytes)
0.4.0.27 18409 25864829 3
0.4.0.21 13900 15515873 46
0.4.0.30 3097 4417620 1
0.4.0.44 3185 3350880 1
0.4.0.64 1347 1948443 7
end of text table
...

Explanation: The output of crl flow is a Tuple Table, with
keys src, dst, proto, ok, sport, and dport. To aggregate those
flows by source IP address, we apply the src IP Table opera-
tor with t2 convert. Since the flows column in a Tuple Table
is always 1, the flows column in the resulting IP Table is the
number of flows with that source IP address. Sorting this
IP Table by bytes and taking the top 5 entries shows the
hosts sending the most bytes.

D.2 Goal: find the top 5 web servers by HTTP flows

Command line:

crl_flow -I -b -Ci=10 -C’filter tcp src port 80’ if:fxp0 |
t2_convert src_IP_Table |
t2_top -Sf -n5

Sample output:

#KEYS pkts bytes flows
(top 5 sorted by flows)
0.3.0.77 126 101845 23
0.1.0.108 102 52397 17
0.1.0.52 180 78166 15
0.1.0.42 8 320 8
0.1.0.182 24 1713 5
end of text table
#KEYS pkts bytes flows
(top 5 sorted by flows)
0.1.0.108 192 80733 36
0.3.0.77 131 119220 22
0.1.2.145 5 205 5
0.1.2.135 66 72221 5
0.1.0.119 17 25500 4
end of text table
...

Explanation: This is similar to the previous example, except
we limit the traffic to web servers by using a filter option to
crl flow and sort by flows (-Sf) instead of bytes. Aggregating
this Tuple Table by source IP address and then sorting the
resulting IP Table by flows shows the web servers with the
most HTTP connections during each 10 second interval.

THE CORALREEF SOFTWARE SUITE AS A TOOL FOR SYSTEM AND NETWORK ADMINISTRATORS 6

start pkts bytes flows entries pkts/s bits/s flows/s

1001982746 143315 97458948 6624 6624 14.33k 77.97M 662.40

1001982756 143985 98792491 6465 6465 14.40k 79.03M 646.50

...

Listing 4

t2 rate output: Utilization and flows.

src dst proto ok sport dport

#KEYS pkts bytes flows

0.4.0.27 0.98.0.1 6 1 46978 64671 16035 22534236 1

0.4.0.30 0.19.0.2 6 1 22 64156 2965 4230700 1

0.4.0.44 0.158.0.1 6 1 22 33222 3647 3919348 1

0.4.0.4 0.17.0.1 6 1 80 58013 1831 2702668 1

0.4.0.3 0.15.0.1 6 1 45925 20 2244 2390668 1

end of text table

#KEYS pkts bytes flows

0.4.0.27 0.98.0.1 6 1 46995 64683 9311 13084084 1

0.4.0.27 0.98.0.1 6 1 46978 64671 9095 12780460 1

0.4.0.30 0.19.0.2 6 1 22 64156 3097 4417620 1

0.4.0.44 0.158.0.1 6 1 22 33222 3185 3350880 1

0.4.0.21 0.73.0.2 6 1 60971 119 1362 1915352 1

end of text table

Listing 5

t2 top output: High bandwidth consumers.

Table Type Keys

Tuple Table source IP, destination IP, IP protocol, ports ok, source port, destination port
IP Table IP
IP Matrix source IP, destination IP
Proto Ports Table IP protocol, ports ok, source port, destination port
Port Table port
Port Matrix source port, destination port
Proto Table IP protocol
AS Table AS
AS Matrix source AS, destination AS
Country Table country
Country Matrix source country, destination country
App Table application
VPVC Table vp/vc pair
Prefix Table prefix/masklength
Prefix Matrix source prefix/masklength, destination prefix/masklength
Length Table length

TABLE 1

CoralReef table types.

THE CORALREEF SOFTWARE SUITE AS A TOOL FOR SYSTEM AND NETWORK ADMINISTRATORS 7

Tuple Table

IP Table

IP Matrix

Port Table

Port Matrix Proto Table

Proto Ports Table

AS Table

AS Matrix

Country Table

Country Matrix

AS_Matrix

Country_Matrix

src_AS_Table

Proto_TablePort_Matrix

Proto_Ports_Table

AS_Table

dst_AS_Table

src_IP_Table

dst_IP_Table

Country_Table

src_Port_Table

dst_Port_Table

Country_Matrix

Country_Table

Country_Table

Fig. 3. Table conversion operations.

E. Using t2 * to find hosts talking to the most hosts

Normally, the flows column in each entry of the output
table of t2 convert is the sum of the flows column of the input
table entries with the same output keys. But with the -F
option of t2 convert, the flows column in each output entry
will be the number of input entries with the same output
keys. For example, given this IP Matrix table:
src dst pkts bytes flows
0.0.0.1 0.0.0.2 3 120 3
0.0.0.1 0.0.0.3 1 40 1
0.0.0.1 0.0.0.4 10 400 5

The command “t2 convert src IP Table” yields an IP Table in
which the flows column shows the number of 5-tuple flows
with the given source address:
src pkts bytes flows
0.0.0.1 14 560 9

but “t2 convert -F src IP Table” yields an IP Table in which
the flows column shows the number of IP pairs with the
given source address:
src pkts bytes flows
0.0.0.1 14 560 3

E.1 Goal: find the number of unique destination hosts for each
source host

Command line:

crl_flow -I -b -Ci=10 if:fxp0 |
t2_convert IP_Matrix |
t2_convert -F src_IP_Table |
t2_top -Sf -n5

Sample output:

#KEYS pkts bytes flows
(top 5 sorted by flows)
0.1.0.120 1059 135597 159
0.1.0.5 1224 149885 143
0.4.1.16 188 13280 110
0.4.0.7 1239 140900 87
0.1.0.1 799 67787 78
end of text table

#KEYS pkts bytes flows
(top 5 sorted by flows)
0.1.0.120 1159 93601 167
0.1.0.5 1553 119823 157
0.4.0.7 1042 109109 79
0.1.0.1 884 75684 71
0.1.0.65 941 106510 65
end of text table

Explanation: Remember, since the -F option was used on the
second t2 convert, the flows column is actually the number of
corresponding entries in the IP Matrix input table, i.e. the
number of IP pairs with the given source address. So, in
the first 10 second interval, host 0.1.0.120 sent traffic to 159
different destination hosts, totaling 135597 bytes.

E.2 Goal: find the top 5 web servers by number of clients

Command line:

crl_flow -I -b -Ci=10 -C’filter tcp src port 80’ if:fxp0 |
t2_convert IP_Matrix |
t2_convert -F src_IP_Table |
t2_top -Sf -n5

Sample output:

#KEYS pkts bytes flows
(top 5 sorted by flows)
0.1.0.52 180 78166 11
0.1.0.108 102 52397 6
0.1.0.62 33 33203 4
0.1.0.182 24 1713 4
0.1.0.231 40 33100 3
end of text table
#KEYS pkts bytes flows
(top 5 sorted by flows)
0.1.0.108 192 80733 11
0.1.2.135 66 72221 5
0.1.0.182 20 7135 4
0.3.0.77 131 119220 2
0.1.1.7 145 39893 2
end of text table

THE CORALREEF SOFTWARE SUITE AS A TOOL FOR SYSTEM AND NETWORK ADMINISTRATORS 8

Explanation: This example is similar to the previous one,
except that we first filter the traffic to measure only packets
sent by HTTP servers. So, in the first 10 second interval,
host 0.1.0.52 sent HTTP traffic to 11 different destination
hosts, totaling 78166 bytes.

E.3 Goal: find hosts on your internal network trying to spread the
CodeRed worm

Command line:

crl_flow -I -b -Ci=60 -Csource=if:fxp0 \
-C’filter tcp dst port 80 and src net 10.0.0.0/8’ |

t2_convert IP_Matrix |
t2_convert -F src_IP_Table |
t2_top -Sf -n5

Sample output:

#KEYS pkts bytes flows
(top 5 sorted by flows)
10.0.39.61 7680 460800 7680
10.0.198.103 8960 358400 6144
10.0.39.60 6144 368640 6144
10.0.0.190 7168 299008 4864
10.0.19.1 12544 602112 4608
end of text table
#KEYS pkts bytes flows
(top 5 sorted by flows)
10.0.39.61 8448 506880 8448
10.0.39.60 7424 445440 7424
10.0.198.103 7680 307200 6656
10.0.0.141 6144 256000 4352
10.0.213.103 4352 188416 3584
end of text table

Explanation: Hosts infected with the CodeRed worm try to
infect large numbers of other hosts by attempting to open
an HTTP connection to random IP addresses (which may
or may not actually exist or be running a web server)[18].
With the exception of web caches, most hosts do not open
HTTP connections to more than a few different servers per
second, so we should be suspicious of any host that tries to
connect to significantly more servers. In particular, hosts
infected with CodeRed attempt to open HTTP connections
to many tens or hundreds of hosts per second. By using
a filter that selects only packets from the internal network
(10.0.0.0/8 in this example) to HTTP servers, and by seeing
which of the hosts sending those packets are attempting to
communicate with the most servers, we produce a list of
internal hosts that are behaving suspiciously.

V. Report Generator

The CoralReef report generator provides a web interface
to continuously updated link usage reports. The report gen-
erator (t2 report) is a Perl application, using C backends for
speed, which receives (via a pipe) either live data or traces
taken from crl flow. t2 report collects and displays time-
series information by using RRDtool [19].
The report generator utilizes many of the features of the

CoralReef suite and thus illustrates some of the capabilities
of the suite. At configurable intervals (e.g. every 5 min-
utes), t2 report produces pie charts and tables of traffic data
from the most recent sample interval, and timeseries graphs
of data over the last hour, day, week, month, and year. All
three report forms present data as bytes, packets, and flows.
The pie charts and tables show protocol breakdown, appli-
cations, flows, source/destination hosts, unknown TCP and
UDP, and source/destination ASes and countries. The time-
series graphs show absolute counts and percentages for pro-
tocol breakdown and applications. There are two sets of
application timeseries graphs. One shows only the appli-
cations specified in the t2 report configuration file, and the
other shows the applications with the most traffic in each
interval.
To report traffic by AS number, countries, and applica-

tion names, t2 report must use external data not present

in the packets themselves. t2 report uses a library called
ASFinder and a routing table, as output by parse bgp *, to
map IP addresses to AS numbers. To get countries and AS
names from AS numbers, t2 report uses NetGeo[20]. Appli-
cation names are found by the AppPorts library, which uses
a prioritized ruleset to map protocol and port numbers to
applications. Users can add or modify application rules by
editing a simple text file.
Figure 4 shows an example of a timeseries plot of appli-

cation breakdown by bytes. Figure 5 shows an example of
the top source ASes by bytes in a 5 minute period. The
CoralReef web site has a live demonstration of the report
generator monitoring the commodity traffic link for the U.
C. San Diego.

VI. Conclusion

CoralReef provides a suite of tools to aid network admin-
istrators in monitoring and diagnosing changes in network
behavior. CoralReef provides a unified platform to a wide
range of capture devices and a collection of tools that can
be applied at multiple levels of the network. Its components
provide measures on a wide range of real-world network traf-
fic flow applications, including validation and monitoring of
hardware performance for saturation and diagnosis of net-
work flow constraints. CoralReef can be used to produce
standalone results or produce data for analysis by other pro-
grams. CoralReef reporting applications can output in text
formats that can be easily manipulated with common UNIX
data-reduction utilities (e.g. grep), providing enormous flex-
ibility for customization in an operational setting.

CoralReef provides a balanced collection of features for
network administrators seeking to monitor their network
and diagnose trouble spots. It serves as a useful bridge
between higher level monitoring tools which only work at a
coarse level of aggregation and “dump” utilities which may
overwhelm the administrator with detail. By covering the
range from raw packet capture to real-time HTML report
generation, CoralReef provides a viable toolkit for wide range
of network administration needs.

VII. Acknowledgments

Support for CoralReef is provided by NSF Grant
NCR-9711092, DARPA NGI Contract N66001-98-2-8922,
DARPA NMS Grant N66001-01-1-8909, and by CAIDA
members. We would like to thank Mike Tesch (formerly
CAIDA) and Jambi Ganbar of MCI (formerly CAIDA) for
early prototypes and testing; Sue Moon of Sprint Advanced
Technology Laboratories and Chris Rapier of Pittsburgh Su-
percomputing Center for their feedback on CoralReef; Nevil
Brownlee, Young Hyun, Colleen Shannon, Daniel J. Plum-
mer, and everyone else at CAIDA for their input and sup-
port.

VIII. Availability

The CoralReef software package is available for non-
commercial use from http://www.caida.org/tools/measurement/
coralreef/. Questions about CoralReef can be e-mailed to
coral-info@caida.org.

References

[1] V. Jacobson, C. Leres, and S. McCanne, tcpdump, Lawrence
Berkeley Laboratory, Berkeley, CA, June 1989, available via
anonymous ftp to ftp.ee.lbl.gov.

[2] N. Brownlee, “RFC 2123: Traffic flow measurement: Experi-
ences with NeTraMet,” Mar. 1997, Status: INFORMATIONAL.

[3] J. Apisdorf, k claffy, Kevin Thompson, and Rick Wilder,
“OC3MON: Flexible, affordable, high performance statistics col-
lection,” in In Proceedings of the 1996 LISA X Conference, 1996.

[4] J. Apisdorf, k claffy, K. Thompson, and R. Wilder, “OC3MON:
Flexible, affordable, high-performance statistics collection,” in
INET’97 Proceedings, June 1997, http://www.isoc.org/isoc/
whatis/conferences/inet/97/proceedings/F1/F1_%2.HTM.

[5] S. McCanne, C. Leres, and V. Jacobson, libpcap, Lawrence
Berkeley Laboratory, Berkeley, CA, available via anonymous ftp
to ftp.ee.lbl.gov.

THE CORALREEF SOFTWARE SUITE AS A TOOL FOR SYSTEM AND NETWORK ADMINISTRATORS 9

Fig. 4. Example of a timeseries plot of application breakdown by bytes

Fig. 5. Example of top source ASes by bytes in a 5 minute period

THE CORALREEF SOFTWARE SUITE AS A TOOL FOR SYSTEM AND NETWORK ADMINISTRATORS 10

[6] Gerald Combs et al., “Ethereal — a network protocol analyzer,”
http://www.ethereal.com/.

[7] N. Brownlee, C. Mills, and G. Ruth, “RFC 2722: Traffic flow
measurement: Architecture,” Oct 1999.

[8] S. Handelman, S. Stibler, N. Brownlee, and G. Ruth, “RFC
2724: RTFM: Net attributes for traffic flow measurement,” Oct.
1999.

[9] P. J. Lizcano, A. Azcorra, J. Sol-Pareta, J. Domingo-Pascual,
and M. Alvarez Campana, “MEHARI: A system for analysing
the use of internet services,” Computer Networks, vol. 81, pp.
2293–2307, 1999.

[10] Narus, “Narus IBI Platform,” http://www.narus.com/ibi/.
[11] Waikato Applied Network Dynamics group, “The DAG project,”

http://dag.cs.waikato.ac.nz/.
[12] Clevertools, “Analyzer – Packet-Sniffer – Network Tools,” http:

//www.clevertools.com/.
[13] Network Associates, “Sniffer home,” http://www.sniffer.com/.
[14] Niksun, “NetVCR,” http://www.niksun.com/products/

netvcr.html.
[15] Ken Keys, David Moore, Ryan Koga, Edouard Lagache, Michael

Tesch, and k claffy, “The architecture of CoralReef: an In-
ternet traffic monitoring software suite,” in PAM2001 — A
workshop on Passive and Active Measurements. CAIDA, Apr.
2001, RIPE NCC, http://www.caida.org/outreach/papers/
pam2001/coralreef.xml.

[16] MRTd, “MRT — multi-threaded routing toolkit,” http://www.
mrtd.net/.

[17] KaZaA, “KaZaA media sharing,” http://www.kazaa.com/.
[18] eEye Digital Security, “.ida “Code Red” worm,” http://www.

eeye.com/html/Research/Advisories/AL20010717.html.
[19] T. Oetiker, “RRDtool – round robin database,” .
[20] David Moore, Ram Periakaruppan, Jim Donohoe, and kc claffy,

“Where in the world is netgeo.caida.org?,” in INET 2000 Pro-
ceedings, June 2000.

David Moore is the Co-Director and a PI of CAIDA (the Co-
operative Association for Internet Data Analysis). David’s research
interests are high speed network monitoring, denial-of-service attacks
and infrastructure security, and Internet traffic characterization. His
current research includes using the backscatter analysis technique to
track and quanitify global DoS attacks and Internet worms.
Ken Keys is lead developer of CAIDA’s CoralReef project. He

has been involved with network research for 3 years and programming
UNIX networking code for over 12 years. Ken is known to many for
his years of work on TinyFugue, a popular MUD client.
Ryan Koga is CAIDA’s resident expert at integrating C and C++

with Perl. He spends most of his time developing libraries for
CoralReef and writing assorted programs for other CAIDA projects.
Edouard Lagache is a Researcher and Perl developer with CAIDA.

He received his Ph.D. from the University of California, Berkeley in
1995. He has done research on human/computer interaction and
social aspects of learning.
kc claffy is Co-Director and a PI of CAIDA, and a resident re-

search scientist based at the University of California’s San Diego
Supercomputer Center. kc’s research interests include Internet work-
load/performance data collection, analysis and visualization, partic-
ularly with respect to commercial ISP collaboration/cooperation and
sharing of analysis resources. kc received her Ph.D. in Computer
Science from UCSD in 1994.

