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Abstract—Organizations operating Root DNS servers re-
port loads exceeding 100 million queries per day. Given the
design goals of the DNS, and what we know about today’s In-
ternet, this number is about two orders of magnitude more
than we would expect.
With the assistance of one root server operator, we took a

24-hour trace of queries arriving at one of the thirteen root
servers. In this paper we analyze these data and use a simple
model of the DNS to classify each query into one of nine cat-
egories. We find that, by far, most of the queries are repeats
and that only a small percentage are legitimate.
We also characterize a few of the “root server abusers,”

that is, clients sending a particularly large number of
queries to the root server. We believe that much of the root
server abuse occurs because the querying agents never re-
ceive the replies, due either to packet filters, or to routing
issues.
Keywords—DNS root server

I. BACKGROUND: DNS 101

The Domain Name System (DNS) is a fundamental
component of the modern Internet [1], providing a critical
link between human users and Internet routing infrastruc-
ture by mapping host names to IP addresses. The DNS
utilizes a hierarchical name space divided into zones, or
domains. This hierarchy is manifested in the widespread
“dots” structure. For example, com is the parent zone for
example.com, microsoft.com, cnn.com, and ap-
proximately 20 million other zones.
Each zone has one or more authoritative name servers.

These are dedicated servers, whose job is to answer queries
for names within their zone(s). For example, UCSD has
three authoritative name servers. An application that needs
to know the IP address for www.ucsd.edu can send a
DNS query to one of those servers, which then returns
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an authoritative answer. If the application does not know
where to send a query it asks the servers in the parent
zone. In the example above, not knowing anything about
ucsd.edu, the application should send a query to the au-
thoritative server for the edu zone. If the application does
not know about the edu zone, it queries the “root zone.”
This process is called recursive iteration.
The DNS root zone is served by 13 name servers (not to

be confused with the 13 generic top-level domain servers)
distributed across the globe. Thirteen is the maximum
number of root servers possible in the current DNS archi-
tecture because that is the most that can fit inside a 512-
byte UDP reply packet. Ten root servers are located in the
U.S., two are in Europe, and one is in Asia.1 The root
zone and the root name servers are vital because they are
the starting points for locating anything in the DNS. With-
out them, the DNS and hence almost every application we
use (the Web, ssh, email) would be rendered unusable.
DNS clients, or resolvers, that query name servers,

come in one of two flavors: stub and recursive. Stub re-
solvers, typically found in user applications, such as web
browsers, ssh clients, and mail transfer agents, are rather
primitive and mostly rely on smarter recursive resolvers
that understand name server referrals. Recursive resolvers
are usually implemented in specialized DNS applications
such as the Berkeley Internet Domain Name (BIND) [2]
server and Microsoft’s DNS server. Most organizations
operate local recursive name servers.
Recursive name servers cache name server responses,

including referrals. Caching conserves network resources
because intermediate servers do not need to query the root
name servers for every request. For example, the name
server learns that a.gtld-servers.net and others
are authoritative for the com zone and sets the time-to-
live (TTL) for this information. Typical TTLs for top level
domains are on the order of 1–2 days.
In theory, a caching recursive name server only needs to

query the root name servers for an unknown top level do-
main or when a TTL expires. However, a number of stud-
ies have shown that the root name servers receive many
more queries than they should. In this paper we thor-
oughly investigate and characterize root name server traf-

1In fact many of the root name servers are actually multiple hosts be-
hind network load balancers. Some of them even occupy a few physical
locations, employing IPv4 anycast to operate under a single IP address.
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fic using 24 hours of tcpdump data collected at the F root
server, f.root-servers.net. Our goal is to study the
statistics of queries to a root server in order to understand
how the valuable root server resources are used. We also
consider the impact of non-caching referrals and attempt
to identify applications and/or operating systems that are
more likely to be root server abusers.

II. RELATED WORK

Analysis of root server logs by Danzig et al. [3] was
the first published large-scale study of DNS. They found
a large number of implementation errors that caused un-
necessarily wasted bandwidth. Not only are some of these
bugs still with us today, ten years later, but the explosive
Internet growth during the last decade has exacerbated this
problem by orders of magnitude. Sadly, the authors’ pre-
diction of “buggy new implementations arising from ven-
dors” also turned out to be true and “defective resolvers
and name servers” continue to generate millions of mean-
ingless wide-area packets every day.
Nemeth et al. [4] analyzed a few hours of traces col-

lected at the F root name server and found an astounding
number of bogus queries. Our study, based on a larger vol-
ume of data, continues and further extends their analysis.
We compare our findings with theirs in Section IV-C.
Several projects are devoted to continuous monitoring

of the DNS root servers’ performance [5], [6], [7]. Their
results are posted on theWeb and are updated at least daily.

III. METHODOLOGY

A. Trace Collection

The F root server consists of four machines located in
San Francisco and Palo Alto. We measured query traffic
for all four machines for 24 hours on October 4, 2002. We
captured only queries (but not responses) and stored them
as raw tcpdump packets. The total trace file is 14 GB and
contains 152,744,325 queries. Figure 1 shows that the rate
of queries during our observations exhibited rather large
but brief spikes. The mean query rate was 1768 per second.
Note that the general pattern of query traffic remains the
same throughout the 24-hour observation period.
Note that we did not actually run tcpdump on the root

server itself. Rather, the server’s switch is configured for
port mirroring, and we run tcpdump on a separate host.
Thus our monitoring activities are less likely to interfere
with the root server’s operation. Furthermore, f.root-
servers.net utilizes packet rate limiting so that any
single source does not overwhelm the server. Each source
IP address is limited to 10 Kbits/sec, with a queue size of
3 packets. Packets that would exceed the queue size are
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Fig. 1. Number of queries per second during 24-hour observa-
tion period on 4 October 2002 at the F-root DNS server.

simply dropped and never delivered to the server appli-
cation. Thus our data represent the traffic arriving at the
server host, but not the traffic presented to the name server
software (BIND).
During the time of our trace, f.root-servers.net

was authoritative for more than just the root zone. In par-
ticular, it was authoritative for edu, gov, arpa, in-
addr.arpa, and root-servers.net itself. This
means that F receives more queries than it would were it
only authoritative for the root zone. Due to the nature of
DNS, we cannot eliminate queries based on the server’s
role. F may have received a query for foobar.edu be-
cause it is an edu name server, or because it is a root
server.
The decision to capture only queries, and not responses,

comes from our desire to take a minimal amount of data
from the root server. The additional information may have
allowed us to perform additional, or more sophisticated,
analyses. However, adding responses to the trace would
almost double the amount of data we dealt with.

B. Classifying Queries

We made the following assumptions about queries:
• Each source IP address is a single DNS agent. In our
analysis of caching behavior we assume that a subsequent
query from a given IP address comes from the same agent
as the first query. In fact, it is possible that two separate
agents share an IP address, but we ignore such cases.
• DNS agents are caching name servers. As we discuss in
Section IV-A, some queries appear to come from stub re-
solvers. However, we believe that only caching, recursive
name servers should be talking to the root servers. There-
fore, we consider non-caching as an illegitimate behavior.
• DNS agents are not restarted, thus losing their caches,
during the 24-hour period.
• The root server answers most queries, and these re-
sponses are received back at the source. Since our tcpdump
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trace contains only queries, and not responses, we cannot
be sure how many responses were actually sent.
We categorized each query in the trace into one of the

following nine ordered categories. Note that each query is
only placed into one category. For example, the trace may
contain a repeated query with an unknown TLD, thus qual-
ifying for two categories. We check for unknown TLDs
before repeats, so such a query is classified only as the for-
mer. Our categories are:

B.1 Unused Query Class

The query class field in a DNS message occupies 16 bits
and can have a value between 0 and 65535. However, the
standards and implementations only define five values: IN
(1), CHAOS (3), HS (4), NONE (254), and ANY (255).
The CHAOS and HS (Hesiod) classes appear to be in sup-
port of MIT networking systems [8], [9]. The ANY class is
a wildcard, and NONE is used for precondition checks in
the DNS update protocol. No other classes are defined, and
we would not expect to see queries with unknown classes
arriving at a root name server.

B.2 A for A

This is, simply, an A query for a name that is already in
numeric address form. For example:

06:45:38.573855 236.197.47.135.32772 > f.53: 25927 A? 207.244.8.2.

The application generating this query should be able to
recognize that it already has an IP address and avoid the
query altogether.

B.3 Unknown TLD

The Internet currently has 258 top-level domains
(TLDs). These legitimate TLDs include country code do-
mains (fr, au, etc.), the traditional generic domains (com,
net, etc.), and some newer domains (biz, info, and
others). A query for a name not matching one of the known
TLDs is classified as an Unknown TLD.

B.4 Non-printable characters in query name

According to the DNS protocol specifications [10], the
only valid characters in DNS names are the letters A–Z,
numbers 0–9, and hyphen. This restriction is frustrating
for people desiring to use native languages that have ad-
ditional characters. A number of protocol modifications
have been proposed ([11], [12]) and some applications are
already using extended character sets. Nonetheless, we
choose to separate out queries that contain characters out-
side the range defined by RFC 1035 [10].

B.5 RFC 1918 in PTR

RFC 1918 [13] defines network addresses for private,
intranet use. Countless organizations use those subnets be-
hind network address translation servers. In theory, these
private addresses should never leak into to the public In-
ternet. Section 3 of RFC 1918 states:
Indirect references to such addresses should be contained
within the enterprise. Prominent examples of such refer-
ences are DNS Resource Records and other information
referring to internal private addresses. In particular, In-
ternet service providers should take measures to prevent
such leakage.
That is, outside observers (such as a root server) should

not see IP packets with source or destination addresses that
are in RFC 1918-specified address space. We also should
not observe PTR queries for such addresses. DNS admin-
istrators must install reverse zone files for the RFC 1918
address space that they use, essentially pirating the DNS
for this space, and then make sure there is no access to
these zone files from the external global Internet.

B.6 Identical Queries

An identical query occurs when a source sends a query
with exactly the same parameters (such as class, name,
type, and ID) as any of its previous queries. In our analy-
sis we did not place any temporal restrictions on detecting
an identical query. The time between repetitions may be a
few microseconds or a few hours.

B.7 Repeated Queries

This category is similar to an Identical Query, except
that only the class, name, and type must be the same, but
the query ID values are different. Again, we do not impose
time requirements on repeated queries.
Detecting repeated queries and uncached referrals (be-

low) requires maintaining a history of previous queries.
Thus we sort the trace by source IP addresses and analyze
one IP address at a time.

B.8 Referral Not Cached

A referral-not-cached query occurs when a client sends
a query for a different name in the same zone as its pre-
vious query. For example, assume that a client makes a
query for foo.com. The root name server replies with a
referral to the authoritative name servers for the com zone.
The client should then send all future queries for names in
com domain to those other name servers. If the root server
receives a query for bar.com from this client, we classify
it as referral-not-cached.
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Fig. 2. Number of queries vs. rank.

Note that the F root server is authoritative not only for
the root zone, but also for arpa, in-addr.arpa, edu,
gov, and root-server.net. This complicates our
analysis somewhat. Consider a query for school1.edu
followed by school2.edu. We do not categorize the
second query as referral-not-cached because F-root is the
authoritative server in this case and the second query is le-
gitimate. However, a query for www.school1.edu fol-
lowed by ftp.school1.edu does get categorized as
referral-not-cached.

B.9 Legitimate

Any query not matching one of the previous classes is
deemed legitimate.

IV. RESULTS

A. General statistics

Our data contain 152,744,325 queries from 382,708
unique source IP addresses, or nearly 400 queries per
source on average. However, the distribution of num-
ber of queries per source is extremely skewed. The
220 busiest sources generated 50% of the queries (nearly
350,000 queries per source on average). Figure 2 shows
the source’s rank (in the order of decreasing number of
queries) on the x-axis and the number of queries per source
on the y-axis. The #1 ranking source alone sent more than
three million queries during the 24-hour observation pe-
riod.
Table I presents the breakdown of queries by type. Not

surprisingly, more than half are for A records. PTR queries
come in second, comprising almost 20% of the total.
We found that 3,389,462 queries (2.22%) from 23,945

sources (6.26%) have the “recursion desired” (RD) bit set.
The root name servers have recursion disabled, so many
of these queries may be going unresolved. The RD bit is
usually set by stub resolvers. The fact that stub resolvers
are sending queries directly to root servers is a disconcert-
ing discovery. It may indicate that incompetent system

QTYPE Count Percent
A? 84,710,847 55.5
PTR? 30,462,666 19.9
AAAA? 7,213,988 4.7
MX? 7,019,561 4.6
A6? 6,900,619 4.5
SOA? 6,403,621 4.2
ANY? 4,786,327 3.1
NS? 2,636,004 1.7
SRV? 1,819,762 1.2
CNAME? 662,553 0.4
other 128,377 <0.1

TABLE I
COUNT AND PERCENTAGE OF QUERY TYPES

administrators are inserting the root server addresses into
/etc/resolv.conf (or equivalent) files.

B. Busy Sources

We are particularly intrigued by those sources that gen-
erate the most queries. If the system were functioning
properly, it seems that a single source should not need to
send more than 1000 or so queries to a root name server
in a 24-hour period. Yet we see millions of queries from
certain sources in the trace.
We identified a few extraordinarily busy sources and an-

alyzed the types of queries they generate, such as query
names, types, IDs, and query interarrival times. Some of
our findings follow. Source IP addresses are anonymized
for privacy protection.

B.1 Source 1

The busiest source is from within a /8 network allo-
cated to a branch of the U.S. military. This host generated
3,052,825 queries, or 2.00% of the total for our trace. Its
average rate was 35 queries per second.
76.4% of the queries from this source are for a single

name:
00:00:01.961516 160.30.209.71.1069 > f.53: 118 ANY? BURRBXR1.
00:00:01.961525 160.30.209.71.1069 > f.53: 8318 ANY? BURRBXR1.
00:00:01.961533 160.30.209.71.1069 > f.53: 6272 ANY? BURRBXR1.
00:00:01.961593 160.30.209.71.1069 > f.53: 8331 ANY? BURRBXR1.
00:00:03.027409 160.30.209.71.1069 > f.53: 10592 ANY? BURRBXR1.

The time between some queries is short—less than a
millisecond in the above example. This is astonishingly
shorter than the retransmission interval should be. The
DNS protocol specification recommends that DNS clients
wait 2–5 seconds before retransmitting a query.
Apart from being repeated so frequently, the other prob-

lem with these queries is that the name BURRBXR1 is not
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even a valid TLD. In the query classification (Table II be-
low), these queries are counted as Unknown TLD.
Finally, this particular source address does not seem to

be in the global routing table. A traceroute to this address
stops at the first router without a default next-hop. The
RouteViews server at the University of Oregon [14] reports
“Network not in table.”

B.2 Source 2

The second busiest source belongs to an organization
providing Internet registry services. This source produced
2,465,092 queries. Of these, 58.5% were requests for the
IP addresses of the 13 root name servers. Another 10%
were for addresses within the organization’s own zone.
Interestingly, this source almost always sent queries in
groups of three: for A, A6, and AAAA records. In other
words, for each hostname it asked for an IPv4 address and
for two types of IPv6 addresses.
The organization responsible for this source actually

contributed 29 additional sources to our trace file. All
together they sent 23,300,020 queries during the 24 hour
period, or 15.3% of the total. Fortunately we were able
to exchange email with someone at this organization. He
explained that they use packet filters in an attempt to en-
sure that their servers provide answers for their authorita-
tive zones only. Unfortunately they implemented inbound
packet filters, but not outbound. Such configuration al-
lowed their DNS servers to send queries to the root server
but blocked the root server’s responses.
Although we helped this company understand their mis-

configuration, they did not feel compelled to fix the prob-
lem right away. Although they said it would be fixed with
their “upcoming DNS migration,” the high rate of query
traffic remains as of early December 2002.

B.3 Source 3

The third busiest source is a customer of a DSL ser-
vice provider. This host sent 2,138,697 queries to the root
server. Almost all of these (99.96%) are PTR queries for
IPv4 addresses in the in-addr.arpa zone. Further-
more, 88.6% of this client’s queries are for a single name.
Based on the answer to this frequently repeated query, it
seems likely that the source is querying for the name of a
host within its own organization.
We also noticed that queries from this particular source

come from two different UDP source ports at the same
time. This observation leads us to believe that there may
actually be two name servers sharing this IP address.
This source also sent 109 A queries for this interesting

name in the in-addr.arpa zone:
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Fig. 3. Query ID vs Query Number for a client that only utilizes
25% of the Query ID range. (24 hours at F rootserver on 4
October 2002.)

A? 209.17.66.80.196.200.64.in-addr.arpa.

Names in the in-addr.arpa zone usually have four
numeric components, but this one has seven. It seems
like some buggy software must be generating these bogus
queries.

B.4 Source 4

This source, actually the sixth busiest, is representative
of a large group of sources that exhibit an interesting phe-
nomenon. The valid range for the query ID field in a DNS
message is 0–65535. However, many root server abusers
send queries with ID values strictly less than 16384. Fur-
thermore, they are neither sequential, nor random, but have
the pattern shown in Figure 3. We are wondering what
software generates DNS queries with this strange ID pat-
tern.
It appears as though this DNS agent generates query

IDs from a set of (eight) monotonically increasing coun-
ters. The counters do not increment sequentially, however.
For some sources the pattern is not so obvious because
the root server does not receive each query sent by the
agent. However, the query IDs from these mystery agents
also have another interesting property. Some ID values are
more popular than others, and some values do not appear
at all. Figure 4 shows a distribution of query ID values for
Source #4. A quick glance shows that certain values (such
as 0–7) are never used, and that the histogram has strong
periodicity. Closer examination shows that the counts for
non-occurring IDs are apparently shifted down. For ex-
ample, the seven IDs from 65–71 never occur, but the ID
64 occurs eight times more frequently than the baseline.
Similarly, IDs 49, 51, 53, and 55 never occur, but 48, 50,
52, and 54 occur about twice as often as the baseline. Per-
haps this application is masking off certain query ID bits
in some cases for some reason.
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Fig. 4. Query ID vs Query Number for a client that only utilizes
25% of the Query ID range. This plot shows that some ID values
are more common than others.

Type Count Percent
Unused Query Class 36,313 .024
A for A 10,739,857 7.03
Unknown TLD 19,165,840 12.5
Nonprintable in query 2,962,471 1.94
RFC1918 PTR 2,452,806 1.61
Identical Query 38,838,688 25.4
Repeated Query 68,610,091 44.9
Referral Not Cached 6,653,690 4.36
Legitimate 3,284,569 2.15

TABLE II
QUERY CLASSIFICATION RESULTS (24-HOUR PERIOD ON 4

OCTOBER 2002 AT THE F-ROOT DNS SERVER).

C. Query classification

Table II shows the count and percentage breakdowns for
the nine query classifications defined in Section III-B. The
categories are listed in the order of filtering applied to the
data. Each query is categorized only once and an inter-
section among different categories is empty. For example,
even if exactly the same query for an unknown TLD is re-
peated a million times, it is only counted in Unknown TLD
category, but not in Identical Query.
Clearly, repeated queries, that are either exactly the

same, or with different IDs but with the same content, rep-
resent the biggest category of DNS pollution at the root
server. These two categories account for 70% of the ob-
served query traffic!
Table III compares percentages of different types of

queries in our measurements of the F root server query
traffic with those by Nemeth et al. [4]. Note that this com-
parison is not straightforward since categories we used are
mutually exclusive and categories in [4] are not. There-
fore in their analysis each query may be counted more than

Type Jan 2001 Oct 2002
A for A 12–18 7.03
Unknown TLD 20 12.5
RFC1918 PTR 7 1.61
Identical&Repeated Query 85 70.3

TABLE III
STATISTICAL COMPARISON OF OUR RESULTS WITH THOSE

OF NEMETH ET AL. 2001 STUDY.

once if it is illegitimate in multiple ways.

D. Well-Behaved Sources

We define a source as well-behaved if its number of le-
gitimate queries is greater than the number of referrals not
cached, repeated queries, and identical queries.2 We chose
these three classes because they probably indicate either
buggy software used by a root server client, or configura-
tion problems external to the client. Arguably we could
also compare to the number of RFC1918 PTR queries,
which are due to misconfigured name servers.
For example, the well-behaved source with the largest

number of Legitimate queries (3222) also had 283 Refer-
ral Not Cached, 26 A-for-A, 107 Unknown TLDs, and 64
Repeated Queries.
By this definition the trace contains 310,608 well-

behaved sources. In other words at least 72,100 (19%) of
sources are not well-behaved.

E. TLDs and Query Names

Table IV shows the distribution of the most frequently
requested unknown TLDs. This data provides some in-
sight into how some computer systems may be misconfig-
ured such that they generate substantial unnecessary DNS
traffic. For each unknown TLD, the table shows its over-
all rank among all TLDs, the number of queries, the per-
centage relative to all queries, and the number of sources
querying for that TLD.
The most popular unknown TLD comes from the single

source described in Section IV-B.1. However, next in the
list is “local,” which comes from 24,000 different sources.
It seems likely that either (a) some relatively popular soft-
ware is pre-configured with local as a domain name, or
(b) many system administrators have chosen this domain
for their private intranets and have failed to properly con-
figure their internal name servers.

2Not greater than the sum of these three classes, but greater than each
of them individually



7

TLD Rank Count % Sources
burrbxr1 6 2,331,857 1.53 1
local 7 2,001,210 1.31 24,123
localhost 9 1,962,413 1.28 12,428
wpad 16 651,230 .426 7107
test 32 225,961 .148 1185
eder003 33 218,210 .143 2
domain 41 162,682 .107 5083
lan 43 142,791 .093 2349
workgroup 47 121,547 .080 8471
5〈C7〉〈D0〉〈B3〉〈E2〉 50 110,880 .073 25
elvis 51 106,654 .070 49
admin 59 94,482 .062 821
ns1 68 71,556 .047 1519
msft 86 56,652 .037 1457
kornet 87 54,564 .036 2416
corp 92 51,776 .034 2115
loc 96 51,186 .034 1349
mailhost 97 50,698 .033 512
rcnet 109 48,196 .032 4
server 110 48,075 .031 5773
localdomain 119 46,462 .030 5255

TABLE IV
QUERIES FOR THE TOP 20 UNKNOWN TLDS. THESE

STATISTICS COME FROM THE ENTIRE DATA SET, NOT JUST

THOSE QUERIES CLASSIFIED AS UNKNOWN TLD. THIS LIST

OMITS NUMERIC TLDS, WHICH ARE LIKELY DUE TO THE

BOGUS A-FOR-A QUERIES.

“localhost” is, of course, a well-known name for a sys-
tem’s loopback interface. Many different applications use
the name localhost when they need to communicate
with the local system. In theory, network administrators
should add an entry for localhost in their zone files.
Obviously this doesn’t always happen.3

The non-TLD “wpad” comes from the Web Proxy Auto
Discovery protocol, put forth years ago by Microsoft and
Inktomi. Web user agents are supposed to prepend wpad
to their domain names and issue an A query. However, it
appears that some implementations issue this query even if
the system’s domain name is not set.
Table V shows a list of the most popular query names.

We see some names in common with the TLD list
(burrbxr1, localhost, wpad). Many of the pop-
ular names are for the root servers themselves. The
in-addr.arpa domain is also very popular, although
queries for those names typically come from a small num-
ber of sources.

3In the course of investigating this, we discovered that k.root-
servers.net was serving localhost as a valid TLD, although not during
the time of our trace collection. It has since been removed.

Query Name Count Sources
. 2,982,245 50,031
burrbxr1 2,331,857 1
localhost 1,957,225 11,921
19.31.72.166.in-addr.arpa 1,894,433 15
b.root-servers.net 1,624,504 5808
d.root-servers.net 1,609,124 5828
i.root-servers.net 1,605,421 5708
a.root-servers.net 1,592,555 5923
f.root-servers.net 1,589,174 5406
c.root-servers.net 1,585,910 5759
h.root-servers.net 1,585,275 5826
e.root-servers.net 1,584,081 5788
g.root-servers.net 1,580,213 5781
l.root-servers.net 1,562,124 4726
m.root-servers.net 1,553,264 4457
k.root-servers.net 1,539,592 4770
j.root-servers.net 1,531,589 4773
philorch.com 1,186,696 1
〈nonprintable〉.tw 987,508 4
〈nonprintable〉.2ndpower.com 665,414 2
wpad 651,230 7107
auto.search.msn.com 638,282 1241
25.0/26.96.189.203.in-addr.arpa 559,341 2
www.opasoft.com 527,190 449
in-addr.arpa 503,076 15,089
mxmail.register.com 423,776 104
7.too.co.il 422,627 1
226.82.48.108.in-addr.arpa 372,789 2
136.154.213.54.in-addr.arpa 370,533 1
82.116.105.182.in-addr.arpa 367,112 27
www.math.uwaterloo.ca 365,227 7
tgp-gfn.trulyglobal.com 354,207 3
21.9.128.in-addr.arpa 321,712 1
154.85.72.18.in-addr.arpa 304,290 60
130.128/209.28.10.102.in-addr.arpa 295,150 136
104.193.151.229.in-addr.arpa 293,653 1
d11-c5.data-hotel.net 273,526 1

TABLE V
TOP 27 FULL QUERY NAMES SEEN IN THE 24 HOUR TRACE

FILE. IP ADDRESSES HAVE BEEN CHANGED IN THE

INTEREST OF PRIVACY.

F. OS Fingerprinting

We were curious to understand whether certain operat-
ing systems are more likely to be root-server abusers due to
broken name server software. We used a simple OS finger-
printing trick to broadly categorize host operating systems:
IP TTL values. Different operating systems use different
initial values for the IP TTL field. BSD and Linux variants
use 60 or 64, Microsoft Windows uses 128, and Solaris
uses 255. By examining the TTL of received packets, we
can infer their initial values, and hence their operating sys-
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Percent of Sources
OS TTLs All Busiest
BSD/Linux 35–64 49 17
Windows 100–128 40 58
Solaris/? 227–255 7.7 23

TABLE VI
BREAKDOWN OF OPERATING SYSTEM SENDING QUERIES TO

THE F ROOT DNS SERVER ON 4 OCTOBER 2002, BASED ON

IP TTL ANALYSIS.

tem. Table VI shows the result.
The table shows that most operating systems querying F

root this day appear to be BSD or Linux based, with Win-
dows a close second. The Busiest column shows the per-
centages for only the top 220 busiest sources (those con-
tributing 50% of the total traffic).4

G. Repeat Interarrival Times

Because repeated and identical queries contribute to
such a significant amount (70%) of the queries, we were
interested in analyzing the time between repeats. A prop-
erly functioning name server should wait 2–5 seconds be-
fore retransmitting a query.
Recall that our categorization of queries is such that a

particular query falls into only one category. In Section IV-
B.1 we showed the busiest source sending the same query
separated only by milliseconds. However, we classified
those particular queries as Unknown TLD because that
check appears first in our list.
Also recall that we have two categories of repeated

queries: identical queries (with the same query ID) and re-
peated queries for the same name, but with different IDs.
We analyze each category separately. Figure 5 shows the
interarrival time distribution for identical queries. The dis-
tribution has a number of tall spikes between 48–92 sec-
onds, with the tallest spike at 64 seconds. The spikes are
separated by 4 seconds.
These appear to be due to an application that sends re-

peated queries for the root zone itself, with the same query
ID, at fixed intervals:
1033694140.729078 159.47.2.99.32781 > f.53: 56716 NS? . (17) (DF)
1033694232.732738 159.47.2.99.32781 > f.53: 56716 NS? . (17) (DF)
1033694324.736630 159.47.2.99.32781 > f.53: 56716 NS? . (17) (DF)
1033694416.740175 159.47.2.99.32781 > f.53: 56716 NS? . (17) (DF)
1033694508.743738 159.47.2.99.32781 > f.53: 56716 NS? . (17) (DF)
1033694600.749451 159.47.2.99.32781 > f.53: 56716 NS? . (17) (DF)
1033694692.750852 159.47.2.99.32781 > f.53: 56716 NS? . (17) (DF)
1033694784.754556 159.47.2.99.32781 > f.53: 56716 NS? . (17) (DF)

Figure 6 shows the same information for Repeated
Queries. However, here the distribution is quite different.

4Except that we removed the 30 abusers contributing 15% of total
queries from the single organization as an anomaly.
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Fig. 5. Interarrival time histogram for Identical Queries
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Fig. 6. Interarrival time histogram for Repeated Queries

The median, and tallest spike, is at four seconds. The data
shows smaller spikes also at whole second intervals.
It appears as though most of the repeated queries are due

to applications that correctly implement the retransmission
suggestions from RFC 1035. We were initially surprised
to find that most of the queries in this category, 45% of the
total traffic, seem to be due to correctly functioning name
server software. Why is it, then, that the F root name server
receives more than 68 million repeated queries? Surely
this amount cannot be explained by retransmissions due to
packet loss.
We believe that the retransmissions occur because these

sources never receive the root server’s replies. We fur-
thermore believe that this is largely due to packet filters
at sources. For example, a product’s default configuration
may be to deny all packets until explicitly allowed by the
administrator. In some cases, it may also be due to uni-
directional routing problems. That is, reply packets are
dropped because the source’s IP address is unreachable or
missing entirely from the routing table.

V. CONCLUSIONS

Packet filters on name servers are damaging. While
they may protect your servers, they may also cause name
servers to transmit significant amounts of useless traffic. If
you must deny incoming packets, then also deny outgoing
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packets as well.
We know some organizations use packet filters to make

sure their name servers do not answer queries for non-
authoritative domains. Instead, they should turn off recur-
sion in the name server configuration.
Name server software should take more steps to detect

and warn about possible misconfigurations. For example,
sending hundreds or thousands of queries, without getting
any answers probably indicates a low level communication
problem. In this case, the name server application might
rate limit itself, complain to syslog, or in extreme cases,
exit altogether.
There should be a way for name servers to learn which

TLDs are valid, and which are not. For example, if an
SOA query for a TLD generates an NXDOMAIN reply,
the name server could refuse to forward additional queries
for that TLD for some amount of time.
Organizations throughout the Internet require education

and enlightenment about how to properly use RFC 1918
address space. In particular, they must configure their local
name servers to be authoritative for the appropriate in-
addr.arpa zones.
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