
Building a Better NetFlow

Cristian Estan
∗

cestan@cs.ucsd.edu

Ken Keys
†

kkeys@caida.org

David Moore
∗, †

dmoore@caida.org

George Varghese
∗

varghese@cs.ucsd.edu

ABSTRACT
Network operators need to determine the composition of the
traffic mix on links when looking for dominant applications,
users, or estimating traffic matrices. Cisco’s NetFlow has
evolved into a solution that satisfies this need by reporting
flow records that summarize a sample of the traffic travers-
ing the link. But sampled NetFlow has shortcomings that
hinder the collection and analysis of traffic data. First, dur-
ing flooding attacks router memory and network bandwidth
consumed by flow records can increase beyond what is avail-
able; second, selecting the right static sampling rate is diffi-
cult because no single rate gives the right tradeoff of memory
use versus accuracy for all traffic mixes; third, the heuris-
tics routers use to decide when a flow is reported are a poor
match to most applications that work with time bins; fi-
nally, it is impossible to estimate without bias the number
of active flows for aggregates with non-TCP traffic.

In this paper we propose Adaptive NetFlow, deployable
through an update to router software, which addresses many
shortcomings of NetFlow by dynamically adapting the sam-
pling rate to achieve robustness without sacrificing accuracy.
To enable counting of non-TCP flows, we propose an op-
tional Flow Counting Extension that requires augmenting
existing hardware at routers. Both our proposed solutions
readily provide descriptions of the traffic of progressively
smaller sizes. Transmitting these at progressively higher lev-
els of reliability allows graceful degradation of the accuracy
of traffic reports in response to network congestion on the
reporting path.

1. INTRODUCTION
Traffic measurement is crucial to operating all IP networks

because networks must be provisioned based on the traffic
they carry. Flow level measurements are also widely used for
security reasons or to provide insight into the traffic cross-

∗
CSE Dept., University of California, San Diego

†
CAIDA, University of California, San Diego

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’04, Aug. 30–Sept. 3, 2004, Portland, Oregon, USA.
Copyright 2004 ACM 1-58113-862-8/04/0008 ...$5.00.

ing a network. Many existing systems that examine finer
details of traffic to reveal malicious activities [25, 28], moni-
tor complex performance metrics [10] or capture unsampled
traces of traffic. However, these systems based on unsam-
pled traces have inherent scalability problems that restrict
their deployment to lower speed links. SNMP counters [21]
are a simpler solution more widely deployed than flow level
measurement, but they fail to give details about the compo-
sition of the traffic mix as they report only the total amount
of traffic transmitted on the measured link.

Sampled flow level measurement provides a balance be-
tween scalability and detail because performance limits can
be addressed by reducing the sampling rate. Thus it is no
surprise that Cisco’s NetFlow [24] (and other compatible
flow measurement solutions implemented by major router
manufacturers, some under standardization by IETF [5, 6,
4]) are widely deployed and constitute the most popular way
of measuring the composition of network traffic. Most ma-
jor ISPs rely on NetFlow data to provide input to traffic
analysis tools that are widely used by network operators.
NetFlow data is also used in computer networking research.

While the wide deployment and use of NetFlow is proof of
its ability to satisfy important needs of network operators, it
is not an indication that it cannot be improved. In this paper
we identify several shortcomings of NetFlow, and propose
evolutionary solutions to these problems that are backwards
compatible and support incremental deployment.

The main contributions of this paper are as follows.

• 1. Sampling Rate Adaptation: NetFlow uses a
static sampling rate which is either suboptimal at low
traffic volumes or can cause resource consumption (mem-
ory, bandwidth) difficulties at high traffic volumes.
Our adaptive algorithm, by contrast, provably stays
within fixed resource consumption limits while using
the optimal sampling rate for all traffic mixes.

• 2. Renormalization of flow entries: We intro-
duce a new idea in traffic measurement called renor-
malization which allows us to reduce the number of
NetFlow entries after a decrease in sampling rate. We
introduce efficient algorithms for renormalization that
make adapting the sampling rate feasible. Renormal-
ization also enables a layered transmission of NetFlow
data that gracefully degrades the accuracy of traffic
reports in response to network congestion on the re-
porting path.

• 3. Time bins: Most traffic analysis tools divide
the traffic stream into fixed intervals of time that we

call bins. Unfortunately, NetFlow records can span
bins, causing unnecessary complexity and inaccuracy
for traffic analysis. Our Adaptive NetFlow, by con-
trast, ensures that flow records do not span bins. This
simple idea is essential in order to provide statistical
guarantees of accuracy after operations such as renor-
malization and sampling rate adaptation.

• 4. Accurate flow counting: It is well known that
Sampled NetFlow cannot give accurate counts of non-
TCP flows. Such counts are important for detecting
attacks (e.g., Slammer worm) and scans. While our
previous contributions require only software changes,
we show how a modest and easily implementable hard-
ware addition (which we call the Flow Counting Ex-
tension) can give accurate flow counts even for non-
TCP flows. Our extension configured to report just
8000 entries provides better results even for TCP flow
counts than SYN counting estimators based on Net-
Flow reports of 64K entries.

The organization of this paper is as follows. We provide
an introduction to NetFlow in Section 1.1 and describe some
major problems of NetFlow in Section 1.2. We survey re-
lated work in Section 1.3. Next, in Section 2 we present our
Adaptive NetFlow (ANF) proposal, which solves many of
NetFlow’s problems (using adaptation, renormalization and
time bins) and is deployable through a simple update to the
router software. In Section 3 we propose an optional Flow
Counting Extension (FCE) which solves the problem of get-
ting accurate flow counts for non-TCP flows, but changes to
the router hardware are required. Finally, in Section 4 we
present our experimental evaluation of ANF and FCE.

1.1 NetFlow
NetFlow [24], first implemented in Cisco routers, is the

most widely used flow measurement solution today. It started
as a cache for improving the performance of IP lookups and
was later adapted to flow measurement. Routers running
NetFlow maintain a “flow cache” containing flow records
that describe the traffic forwarded by the router. These
flow records are then exported using unreliable UDP to a
computer that collects, analyzes and archives them.

For each router interface, flows are identified by impor-
tant fields in the packet header: source and destination IP
address, protocol, source and destination port, and type of
service byte. The router inserts a new flow record into the
flow cache if a packet does not belong to an existing flow.
NetFlow uses four rules to decide when a flow has ended
which then allows the corresponding record to be exported:
1) when indicated by TCP flags (FIN or RST), 2) 15 seconds
(configurable) after seeing the last packet with a matching
flow ID, 3) 30 minutes (configurable) after the record was
created (to avoid staleness) and 4) when the flow cache is
full. Besides the fields identifying the flow, each flow record
also keeps other data such as the number of packets and
bytes in the flow and the timestamps of the first and last
packet. These records allow many kinds of analyses. For ex-
ample, using the port numbers present in the exported flow
records, an analyst can produce a breakdown of the traffic by
application; using the IP addresses, one can produce a traf-
fic breakdown by source or destination [27]. By combining
data from multiple routers one can obtain a network-wide
view of the traffic demands of the ISP’s customers [16].

Data

and
collection

analysis
serverupdates

DRAM

Router line card

on traffic mix

Small buffer

NetFlow

flow cache

Forwarding

hardware

packet headers
1 in N

Bus

Processor

Software

terminated
flow records

Large numbers of flow
records generated by DoS
attacks can overwhelm the
NetFlow cache and the
network path used to
collect NetFlow data

Sampling rate set
statically but optimal
sampling rate depends

Figure 1: Problems: number of records strongly de-

pends on traffic mix and network operator must set

sampling rate. With unfriendly traffic mixes, the
number of flow records generated by NetFlow in-
creases significantly and this can exhaust the mem-
ory at the router and the bandwidth available for
reporting the records to the collection station. Set-
ting NetFlow’s sampling rate is hard because the
optimal sampling rate depends on the traffic mix.

To update the NetFlow cache when a packet is seen, Net-
Flow must look up the corresponding entry in the flow cache
(creating a new entry if necessary) and update that entry’s
counters and timestamps. Since for high speed interfaces,
the processor and the memory holding the flow cache can-
not keep up with the packet rate, Cisco introduced sampled
NetFlow [29] which updates the flow cache only for sampled
packets. For a configurable value of a parameter N , one of
every N packets is sampled. When using sampled NetFlow
records analysts compensate for the sampling by multiplying
recorded values by N , the inverse of the sampling rate.

1.2 Problems with NetFlow
Even though it is widely used, NetFlow has problems. In

this paper we identify and address four of them.

• Number of records strongly depends on traf-
fic mix. A larger than expected number of records
can overwhelm the router and the network path to the
collection station, as illustrated by Figure 1. Today’s
traffic mixes often include massive flooding denial of
service attacks or aggressive port and IP scans that
generate a large number of “flows” consisting of a sin-
gle small packet. The number of entries exported un-
der these circumstances is very large, and the traffic
they generate can cause the network to drop pack-
ets. Duffield and Lund show [11] that the errors in-
troduced by lost NetFlow packets are worse than the
errors introduced by various types of intentional sam-
pling within the measurement infrastructure. To solve
this problem we propose in Section 2.2 adapting the
sampling rate to the traffic mix.

Problem Solution Requirement

Number of records strongly depends on traffic mix (Figure 1) Adapting sampling rate software update
Network operator must set sampling rate (Figure 1) to traffic (Section 2.2)

Mismatch between flow termination heuristics and analysis (Figure 2) Measurement bins (Section 2.1) software update
Cannot estimate the number of flows (Figure 3) Sampling flows (Section 3) hardware addition

Table 1: Summary of NetFlow problems and proposed solutions.

T N F T F H F F P H P L HLCCT K P H R KKT

T,2

C,2

T,2

flowID=F,Pkts=4

flowID=H,Pkts=4

L,2

flowID=P,Pkts=3 R,2

time (min) 5 6 7 8

flowID=K,Pkts=3

Sampled packets

flowID=N,Pkts=3

NetFlow records

Analysis bins

Figure 2: Problem: mismatch between flow termi-

nation heuristics and analysis. The heuristics used
by NetFlow to terminate flow records do not match
the time bin model used by traffic analysis. For flow
records that span multiple bins, the analysis app-
lication has to estimate how many of the packets
reported belong to each bin. While assuming the
packets were uniformly distributed can give good
results as for flow record H it often produces inac-
curate ones as for flow F.

• Network operator must set sampling rate. Set-
ting the sampling rate involves tradeoffs. The lower
the sampling rate, the fewer the packets that are sam-
pled. This reduces the load of the processor running
NetFlow and the strain on router memory and on the
network used to export the flow records. But a lower
sampling rate also means larger errors in traffic mea-
surement and analysis. The sampling rate constituting
the best compromise between these two opposing con-
siderations depends on the traffic mix: when the traffic
is low we want a higher sampling rate to obtain better
accuracy, while when the volume of the traffic is high
and when massive attacks are in progress we need a
lower sampling rate to protect the measurement in-
frastructure. Setting the static sampling rate is a hard
decision for the network operator. To spare operators
this dilemma we propose adapting the sampling rate
to the traffic mix in Section 2.2.

• Mismatch between flow termination heuristics
and analysis. Traffic analysis and visualization [16,
27, 3, 1, 19] groups traffic into time intervals usually re-
ferred to as “bins”. The size of these bins ranges from
minutes to days and most often one analyzes many
consecutive bins of the same size. If the timestamps
indicating the start and the end of the NetFlow record
are within a single bin, all the packets of the flow are
counted against that bin and processing is simple. On
the other hand if the flow starts in one bin and fin-
ishes in another, one needs to estimate how much of
the traffic belonging to the flow went to each bin. This
complicates processing and introduces inaccuracies, as
shown in Figure 2. Furthermore, interactions between

Sampling probability 1/6

Answer must be wrong for one of the two traffic mixes.

N C F T T H H J J P P L A ALFCN

N M C D F E T U H G J I P R K A BL

C 1

J 1

P 1

Flow cache 1

C 1

I 1

R 1

Flow cache 2

Sampling decisions

Analysis question: How many flows are there?

Traffic mix 1

Traffic mix 2
1 packet flows

2 packet flows

Figure 3: Problem: cannot estimate the number

of flows Assume we want to estimate the number
of flows in these two traffic mixes with the same
number of packets and identical sampling decisions.
Note that the first mix contains 2 packet flows and
the second one twice as many 1 packet flows. Both
flow caches contain three flow records and each has
a packet count of 1, so whatever estimator we use we
will get the same answer for both cases. It will be
significantly off for at least one of the traffic mixes.

sampling and the flow termination heuristics can lead
to flow splitting such as for flow T in Figure 2 which in-
creases the number of times the flow is reported [11]:
because NetFlow only sees the sampled packets, the
time between consecutive packets can increase to more
than the “inactive timer” (15 seconds by default) and
NetFlow terminates the record prematurely and re-
ports fragments of the flow separately. To solve this
problem we propose in Section 2.1 adopting a binned
model for NetFlow.

• Cannot estimate the number of flows. Large in-
creases in the number of flows are telltale signs of de-
nial of service attacks, scans, and worms which are
much easier to notice when the traffic is measured in
flows as opposed to bytes or packets [27]. Without
help from the underlying protocols, it is impossible to
recover the number of flows in the original traffic from
the collected data [8]. Figure 3 illustrates the inher-
ent error when trying to estimate the number of flows.
Both traffic mixes have the same number of packets
and go through the same sampling process. They pro-
duce similar flow caches: both have three entries, each
with a packet counter of one. Any estimator work-
ing with these flow caches would give the same esti-
mate for both traffic mixes, but in at least one of the
cases the result will be significantly off since the sec-
ond mix contains twice as many flows as the first one.
We note here that the actual problem we want to solve
is not counting the total number of flows but the re-
lated problem of counting the number of flows within
specific aggregates (e.g., the number of SMTP flows,

the number of flows coming from an IP address sus-
pected of being a spam relay, etc.) There are good
solutions for counting TCP flows since the first packet
of each flow has the SYN flag set, which is recorded
when present in the packets sampled by NetFlow [12]
and our Adaptive NetFlow. Counting UDP and ICMP
flows is equally important as these protocols are used
for scanning, probing and spreading by worms such as
Slammer [23] and Blaster and by malicious hackers.
To solve this problem we propose in Section 3 the op-
tional addition of new hardware that implements our
Flow Counting Extension.

1.3 Related work
While sampling can be compensated for in reports that

measure the traffic in packets or bytes it has been proven [8]
that it is impossible to measure traffic in flows without bias.
Duffield et al. [12] elegantly sidestep this impossibility re-
sult by using protocol level information present in the Net-
Flow records: they use the number of flow records with the
TCP SYN flag set to accurately estimate TCP flows. We
propose an optional flow counting extension which works
for non-TCP traffic as well. In [13], Duffield et al develop
estimators for flow length distributions and techniques for
scaling measurements of sampled flow data. All of these
techniques continue to be valuable and perform similarly
under our Adaptive NetFlow.

There are solutions for counting the number of flows at
line speeds [15], but these count the total number of flows,
and one cannot later recover the number of flows associated
with specific aggregates of traffic out of the overall mix. Our
flow counting extension allows arbitrary aggregation of the
flow keys in post-processing to obtain estimates of the flows
in those aggregates.

Our flow counting extension is related to flow sampling
introduced by Hohn and Veitch [18]. Important differences
between FCE and their flow sampling are that we also out-
line a hardware implementation that can work at line speeds
and that our primary focus is estimating the number of flows
in arbitrary aggregates of traffic whereas theirs is computing
the distribution of flow sizes. Choi et al. use adaptive sam-
pling [9] to guarantee that the variance introduced by the
variability of packet sizes does not exceed a pre-set limit.

There are solutions such as sFlow [26] that sample packets,
but do not build flow records at all. The great advantage of
these types of solutions is that they report full packet head-
ers together with a portion of the packet payload and this
provides much richer raw data for analysis. The disadvan-
tage is that they do not benefit of the compression achieved
by flow records that count more than one packet.

2. ADAPTIVE NETFLOW
Adaptive NetFlow is an improved version of NetFlow that

addresses the shortcomings discussed in Section 1.2, mostly
without changes to the router hardware or the infrastruc-
ture collecting traffic measurement data. Section 2.1 de-
scribes how we solve the mismatch between analysis and the
flow termination heuristics of NetFlow by simply terminat-
ing flows only at the end of measurement bins. We eliminate
the variability of the size of reported NetFlow data and solve
the problems associated with the operator having to set the
sampling rate by automatically adapting the sampling rate
to the traffic mix (Section 2.2). When adapting the sam-

pling rate ANF occasionally decreases the sampling rate to
avoid filling all available memory. In order to keep the final
results consistent with the new sampling rate, we need to
adjust the packet and byte counters of the existing entries.
We describe how we efficiently perform this “renormaliza-
tion” in Section 2.2.1. If an entry’s packet counter reaches
zero during renormalization, meaning that none of its pack-
ets would have been sampled at the new sampling rate, that
entry is deallocated. To ensure that ANF never runs out
of memory, renormalization must free a certain number of
entries. In Section 2.2.2 we describe the efficient and accu-
rate method used by ANF to find the new sampling rate
that ensures that the required number of entries are freed.
In Section 2.3 we give an example of how a router manu-
facturer could configure ANF to ensure that router memory
and processing power are not exhausted under any possible
traffic mix.

Many proofs of the lemmas presented in this section are
omitted for brevity. They can be found in the technical
report version of this paper [14].

2.1 Operation in measurement bins
It is easiest to first address the mismatch between the Net-

Flow’s flow termination heuristics and the analysis based on
time bins used by applications. We can simplify processing
of NetFlow data if all flow records reported fit within the
bin used in analysis. We divide the NetFlow operation into
short bins so that the bins used by traffic analysis are exact
multiples of the measurement bins. We do not terminate
flow records during the measurement bins, but terminate all
active flow records at the end of the bin. To correctly place
flow records in analysis bins, the analysis application needs
to know only to which measurement bin it belongs. The
timestamps of the first and last packet in flow records are
no longer necessary, but they can be retained for backward
compatibility. Alignment between measurement and analy-
sis bins is not a problem if routers have accurate clocks, or
use solutions such as the Network Time Protocol [22] to keep
their clocks from drifting. Due to binning and to changes of
sampling rate during the operation of ANF, the timestamps
in the flow records cannot be used directly to derive flow
length information. While flow length information might
be derived indirectly, flow length statistics are outside the
scope of this paper.

The size of measurement bins is a compromise between
two opposing considerations. Larger measurement bins re-
duce the traffic generated by NetFlow since records are re-
ported less often. On the other hand measurement bins must
be at least as small as the smallest analysis bins, and smaller
bins mean prompter reporting of network traffic. Choosing
the bin size involves the same tradeoffs as choosing the ac-
tive timeout that controls how long the entry of an active
flow stays before being terminated and reported by Cisco’s
NetFlow to avoid staleness (default 30 minutes). Anecdotal
evidence suggests that network operators often decrease the
active timeout to obtain prompter reporting [2]. We con-
clude that the size of the measurement bin will have to be a
configurable parameter in Adaptive NetFlow. We consider
that one minute and five minutes are both good choices for
the default measurement bin size. In our experiments we
used the more challenging one minute size for the measure-
ment bins.

Fi
rs

t b
in

 s
ta

rt
s

Fi
rs

t b
in

 e
nd

s

Se
co

nd
 b

in
 e

nd
s

D
oS

 s
ta

rt
s

T
hi

rd
 b

in
 e

nd
s

Fo
ur

th
 b

in
 e

nd
s

Fi
ft

h
bi

n
en

ds
D

oS
 e

nd
s

Si
xt

h
bi

n
en

ds

Se
ve

nt
h

bi
n

en
ds

Time

0.001

0.01

Sa
m

pl
in

g
ra

te
 (

lo
g

sc
al

e)

Adaptive NetFlow
Sampled NetFlow

Figure 4: ANF automatically chooses a lower sam-

pling rate during a DoS attack. While NetFlow’s
sampling rate stays constant during a DoS attack,
our Adaptive NetFlow switches to a lower sampling
rate during each bin spanning the attack to keep the
number of flow records generated constant. At the
start of each new bin the rate is reset to the maxi-
mum, so that when the attack ends the rate is not
kept unnecessarily low.

2.2 Adapting the sampling rate
Identifying the optimal sampling rate for NetFlow is hard

because there are many conflicting factors to consider. One
of them is avoiding overloading the processor that performs
the NetFlow processing, whether it is the router CPU or a
processor on a line card. The network operators must use
trial and error to find the rate the router can support. In-
stead we propose that the router manufacturer determines
the maximum sampling rate at which the processor can op-
erate under worst case conditions. This traffic mix could
occur for example due to a massive distributed denial of
service attack.1 We use this as the maximum sampling rate
and we initialize the sampling rate to this value at the be-
ginning of each bin.

Even if we start with a sampling rate low enough to not
overwhelm the processor, the number of entries created can
exceed the amount of available memory. With most traffic
mixes, the number of entries created during a one minute
measurement bin with the highest sampling rate the proces-
sor can support exceeds the tens to hundreds of megabytes
of memory typically reserved for flow records. Instead of
choosing the sampling rate in advance, ANF dynamically
decreases the sampling rate until it is low enough for the

1Since this is a very unlikely scenario, especially for fast
backbone links, in actual practice Adaptive NetFlow will
never use more than a small percentage of the processor.
Even if the router receives this unfavorable traffic mix due to
a massive flooding attack, ANF will keep the processor fully
loaded only for a short time until it decreases the sampling
rate in response to the memory being consumed.

Fi
rs

t b
in

 s
ta

rt
s

Fi
rs

t b
in

 e
nd

s

Se
co

nd
 b

in
 e

nd
s

D
oS

 s
ta

rt
s

T
hi

rd
 b

in
 e

nd
s

Fo
ur

th
 b

in
 e

nd
s

Fi
ft

h
bi

n
en

ds
D

oS
 e

nd
s

Si
xt

h
bi

n
en

ds

Se
ve

nt
h

bi
n

en
ds

Time

0

100

200

300

400

500

600

700

800

900

1000

M
em

or
y

us
ag

e
(t

ho
us

an
ds

 o
f

en
tr

ie
s)

Adaptive NetFlow
Sampled NetFlow

Figure 5: ANF limits memory usage during a DoS

attack. While NetFlow’s memory consumption in-
creases during a DoS attack our Adaptive NetFlow
keeps its memory usage bounded.

flow records to fit into memory. Figure 4 shows how this
process finds different sampling rates for normal traffic and
for a DoS attack.

Traffic analysis multiplies the measured traffic by the in-
verse of the sampling rate to estimate the actual traffic,
but if we keep changing the sampling rate while the flow
records count the traffic, it is hard to determine what sam-
pling rate to use as a basis for this compensation during
analysis. To avoid this problem, we need to renormalize
existing flow entries when we decrease the sampling rate.
The renormalization process is equivalent to stopping the
operation of NetFlow and going through all records to ad-
just the byte and packet counters to reflect the values they
would have had if the new sampling rate had been in effect
from the start of the bin. This way traffic analysis needs
to know only the final sampling rate. Renormalization also
removes the flow entries for which no packets would have
been sampled with the new sampling rate. By freeing en-
tries, renormalization ensures that there is enough memory
to accommodate the records of new flows that appear until
the end of the bin. Figure 5 illustrates how this effectively
caps the memory usage during a DoS attack. The actual
renormalization used by ANF does not require NetFlow to
stop its operation, but operates concurrently. Section 2.2.1
gives a detailed description of how our efficient renormaliza-
tion works and Section 2.2.2 explains how we use efficient
and exact computations of the number of entries removed
to find the new sampling rate that guarantees that renor-
malization removes enough entries to keep the memory from
ever filling.

If the actual sampling rate is dynamic, one cannot ensure
that it is the same for all routers nor even for different time
bins at the same router. This does not cause problems with
combining data from different bins or from multiple sources
(e.g. combining the 60 one minute bins to get the traffic

for the whole hour, or combining the traffic of many routers
to get the traffic of a PoP) because we can simply add the
counters from the flow records after having divided them by
the respective sampling rates.

By adapting the sampling rate we ensure that ANF gen-
erates a fixed number of flow records. It is useful to quantify
the accuracy of the analysis results one can obtain from a
fixed number of records. Lemma 1 shows that, when esti-
mating packets and bytes in arbitrary traffic aggregates that
constitute a certain fraction of the total traffic, the worst
case relative standard deviation depends only on the num-
ber of entries and not on the speed of the link. More simply
put this means that you can slice and dice the data in any
way, and as long as your slices are no smaller than a certain
percentage of the pie, the relative errors of the estimates are
small. For example, let’s say we use a sampling rate that
produces 100,000 flow entries, and network A accounts for
10% of the total packets, we will be able to measure its traf-
fic with a relative standard deviation of at most 1%. If it
accounts for 10% of the bytes, while the average packet size
is 400 bytes and the maximum size 1500, we will be able to
measure its traffic with an average relative standard devia-
tion of at most 1.94% (irrespective of the size of the packets
of network A).

Lemma 1. From the NetFlow records produced with in-
dependent random sampling at a rate at which the expected
number of flow records is M , we can estimate the traffic of
any aggregate amounting to a fraction f of the total traf-
fic with a relative standard deviation of at most

p
1/(Mf)

for the number of packets and at most
p

smax/(savgMf) <p
smax/(sminMf) for the number of bytes where smin, savg

and smax are the minimum, average and maximum packet
sizes.

Proof Let T be the total number of packets. With a sam-
pling rate of M/T , the expected number of packets is M , and
the expected number of entries is at most M . Thus the sam-
pling rate at which the expected number of entries is M will
be p ≥ M/T . The number of packets in the aggregate is fT ,
and the number of those sampled has a binomial distribution
with mean pfT and variance p(1 − p)fT . Since we get the
estimate for the number of packets in the aggregates by mul-
tiplying the number of sampled packets by 1/p, the variance
of the estimate will be (1/p2)p(1 − p)fT = (1 − p)fT/p <
fT/p ≤ fT/(M/T) = fT 2/M . The standard deviation of

this estimate will be at most T
p

f/M and its relative stan-

dard deviation at most T
p

f/M/fT =
p

1/(Mf).
When we measure traffic in bytes, the total traffic is Tsavg

and the traffic of the aggregate is ta ≥ Tsavgf . The variance
for the contribution of a packet of size s is s2p(1− p). Since
packets are sampled independently, the variance for count
for the entire aggregate is

P
s2

i p(1−p) ≤ P
sismaxp(1−p) ≤

smaxp
P

si = smaxpta. Thus the variance of the estimate
will be bound by smaxta/p and its relative standard devia-

tion by
p

smaxta/p/ta =
p

smax/(pta) ≤
p

smaxT/(Mta) ≤p
smaxT/(MTsavgf) =

p
smax/(savgMf). �

Our Adaptive NetFlow also alleviates the problem of ex-
ported flow records exceeding the available bandwidth. Since
the number of flow records generated in each time bin is
limited, the bandwidth consumed by sending them from the
router to the collection station is also limited. By send-
ing the flow records at a proper rate, the router can also

Flow cache Flow cache
Sampling 1/10 Sampling 1/40"Keep" each packet w.p. 1/4

Renormalization

.

L 1

S 3

O 2

S 1

M 2

A 1

O 0

N 0

Y 0

M 9

A 4

N 3

Y 1

L 2

Figure 6: Renormalization reduces packet counters

and frees entries. When our ANF reduces the sam-
pling rate renormalization updates packet and byte
counters (not shown) to values consistent with the
new sampling rate. Entries whose packet counters
reach 0 are freed. Notice how renormalization freed
almost half the entries shown.

ensure that the stream of measurement data is smooth. Re-
cent discussions in IETF’s IPFIX working group [6] advo-
cate improving the reporting of traffic measurement data
by splitting it into multiple levels and transmitting each
with a different degree of reliability: when network condi-
tions are favorable all data arrives at the collection station,
but when the network is overloaded, just the most impor-
tant level arrives intact, similar to receiver-driven layered
multicast [20]. Adaptive NetFlow matches this approach
well since our renormalization is the operation missing from
NetFlow that can be used to generate progressively smaller
traffic summaries to be sent using more reliable transport.

2.2.1 Performing the renormalization
The aim of adapting the sampling rate of ANF is to keep

the number of entries generated under control. After start-
ing the bin with a sampling rate that is safe for the proces-
sor, but not necessarily for the memory, ANF decreases the
sampling rate whenever the number of entries allocated ex-
ceeds a certain threshold. After reducing the sampling rate
we also need to renormalize the existing entries so that we
bring the flow cache to a state consistent with having used
the new sampling rate from the beginning of the bin, as
shown in Figure 6. We consider that the packets that were
not selected with the old sampling rate pold would not have
been selected with the new one pnew either, and the packets
selected with the old sampling rate we keep with probability
pnew/pold and discard with probability 1 − pnew/pold.

One way to implement the renormalization for an entry
with a packet counter of x would be to perform x ran-
dom coin flips with probability pnew/pold to compute the
number of packets with the new sampling rate xnew. By
noticing that xnew has a binomial distribution, we can more
efficiently compute it with a single invocation of the ran-
dom number generator. During renormalization, some en-
tries will have their packet counters decrease to zero, and
be removed from the flow cache. We also need to update
byte counter y to reflect the new sampling rate and we up-

date it proportionately to the change in the packet counters
ynew = y xnew/x.

Implementing a binomial random variable involves signif-
icant amounts of computation. We use a simpler way of up-
dating the packet count that maintains the expected value of
xnew. We show in Lemma 2 that our simplified function for
computing the new packet counter maintains the unbiased-
ness of the packet and byte counts and in Lemma 3 that
and it actually reduces their variance. Let r = pnew/pold

be the probability ratio. The expected value of xnew is
E[xnew] = rx. If rx is an integer, our simplified update
function sets xnew to rx, otherwise to brxc with probability
drxe − rx and drxe with probability rx − brxc and this can
be implemented with a single “coin flip”. In the next sec-
tion we show how to avoid even this one call per entry to
the random number generator.

Lemma 2. After any number of renormalizations using
the simplified update function, the packet and byte counters
for every flow stay unbiased.

Lemma 3. After any number of renormalizations using
the simplified update function, the variance of the packet and
byte counters for every flow is no larger than the variance
they would have had the final sampling rate been in effect
from the beginning of the interval.

While conceptually the renormalization has to process all
entries before we start processing packets sampled at the
new rate, this is impractical because we would need a very
large buffer to store the new packet headers while renormal-
ization is in progress. In practice renormalization proceeds
in parallel with the processing of new packets: for example
after every 10 packets processed, we could renormalize 20
entries. Performing renormalization in batches that group
entries located by each other in memory as opposed to after
each processed packet improves the locality of memory refer-
ences thus increasing the cache hit rate of the processor. All
entries updated with packets sampled at the new sampling
rate must be normalized before the update, so whenever we
process a packet that maps to an entry that hasn’t been
renormalized yet we normalize it “on demand” before up-
dating the packet and byte counters. To maintain a rate
of two renormalization operations per packet processed, we
change the rule from the example above to the following:
after every 10 packets d of which triggered “on demand”
renormalization, we perform a batch of 20 − d renormaliza-
tions.

To avoid falling behind, we must guarantee that the num-
ber of entries freed by renormalization is not smaller than
the number of new entries created by packets sampled at
the new sampling rate while renormalization is in progress.
The number of packets sampled while renormalization is in
progress is an upper bound on the number of new entries cre-
ated. By setting an appropriately low initial sampling rate
we can guarantee that the number of new entries created
does not exceed a fixed number. But how can we guarantee
that we clean a certain number of entries by renormalizing
to a lower sampling rate?

The sampling probability for which renormalization frees
a certain number of entries depends on the packet counters
in the entries. Let’s assume we want to reduce the number
of entries to half. If all existing entries have a packet counter
of one, reducing the sampling rate in half would eliminate

approximately half of them. On the other hand if all entries
had a packet counter of 3, decreasing the sampling rate to
half would free no entries; we should decrease it by a factor of
6 to expect to clean half of the entries. In the next section we
present our solution for finding the sampling rate for which
renormalization frees exactly the desired number of entries.

2.2.2 Finding the right sampling rate
When we choose a new sampling rate for renormalizing,

we need to ensure that a certain number of entries are deleted
so that the new entries created by incoming traffic while
renormalization is in progress don’t push the size of the flow
cache beyond the available memory. A full histogram of the
sizes of the packet counters provides the information needed
for finding the right sampling rate. With the simplified up-
date function, the probability of an entry being removed is
0 if rx ≥ 1 and 1 − rx otherwise where r = pnew/pold. Us-
ing the histogram we can compute the expected number of
entries to be freed during renormalization (ni is the number
of entries with packet counter i).

C =

i<1/rX

i=1

ni(1 − ri) (1)

We can maintain the histogram by performing one more
addition and one subtraction for each processed packet, to
increment the flow counter of the histogram bin correspond-
ing to the new value of the packet counter and decrement
that of bin the old value belongs to. Keeping a histogram
bin for every possible value of the packet counter can take
significant amounts of memory. Fortunately the entries with
packet counts higher than 1/r = pold/pnew are never freed
by our simplified update function. Therefore, to find the
right sampling rate, we do not need the whole histogram,
just the bins smaller than 1/r. In the technical report [14]
we show that we need at most dP/Me histogram bins to
renormalize so that the expected number of entries is M .
It appears that the size of the histogram needs to increase
linearly with the number of packets that can be sampled at
the maximum sampling rate, imposing scalability problems.
However the situation is better for the following 4 reasons:

• For typical configurations, the bound dP/Me is not
large – for example for the configuration discussed in
Section 2.3 the bound is 187;

• The bound does not increase with the speed of the link,
but with measurement bin size and processor speed;

• The traffic mix that actually requires the number of
bins in the bound is very exotic: the link fully loaded
with minimum size packets and with M flows equally
sharing the bandwidth except for T-M flows with one
packet sampled. In none of our experiments, includ-
ing those running with initial sampling rate of 1 in
1 and with M eight times smaller than in the exam-
ple from Section 2.3, did we need more than 5 his-
togram bins. Most often the first histogram bin (the
one counting flow records with a packet count of 1) is
much larger than any of the others and together with
the next few ones it accounts for more than 90% of
the entries. DDoS attacks only increase this first bin
because all sampled attack packets generate 1 packet
flows. Therefore in practice setting the number of his-
togram bins to 32 is more than sufficient;

DECIDE WHETHER TO REMOVE(crtentry)
i = crtentry.packetcounter
vi=vi + 1
if ri ∗ vi + si > fi

fi = fi + 1
return true

else
return false

endif

Figure 7: Calls to the random number generator not

needed for each renormalized entry. By associating a
random seed and a small amount of other state with
each histogram bin, we can perform the per entry
processing using only integer arithmetic.

• Histograms with bin sizes increasing exponentially at
a slow rate (e.g. each histogram bin is 10% larger than
the previous one) give estimates for the number of bins
freed with small bounded error and the number of bins
they need is logarithmic in P/M . Since this solution is
not necessary for configurations we consider realistic,
we do not pursue it any further.

As discussed so far, renormalization requires a random
decision for each entry, but calls to the random number gen-
erator are expensive. With periodic 1 in N sampling as an
inspiration, we use the histogram bins to derive a more effi-
cient method for updating the packet entries, without calls
to the random number generator for each entry. For each
histogram bin, we keep a counter for the number of entries
in that bin visited for renormalization vi a and the number
of entries freed fi. Let ri = 1 − ri be the probability of
removing an entry with a packet counter of i and si a small
random seed between 0 and 1 initialized before the start of
the normalization. Figure 7 gives the criterion used at each
entry to decide whether to remove it or not. Using the fact
that all sampling probabilities are of the form 1/N where N
is an integer, this decision can be implemented using only
integer additions, multiplications, and comparisons. It is
easy to extended efficient update to entries from other bins
for which we need to decide which of two possible values to
update the counter to. We can even extend it to the last
histogram bin counting flows with 32 packets or more, but
we also need to perform an integer division for entries from
this bin. Since the expected value for each packet counter
does not change with our efficient simplified update method,
we introduce no bias. In the technical report [14] we also
show that efficient update does not increase the variance of
the estimates for aggregates.

Using the random seeds in the histogram bin, we can com-
pute the exact number of entries freed in advance. This al-
lows us to quickly find the exact sampling rate for which
renormalization frees the desired number of entries. Can it
happen that during normalization the number of freed en-
tries is temporarily smaller than the number of new entries,
due to the random order in which normalization processes
the entries? It can, and exact modeling of this phenomenon
is complex, but due to the fact that sampling with replace-
ment has higher variance than sampling without replace-
ment, we can upper bound the deviation by the deviation of
a binomial process of T random decisions with probability

M/T (T > M is the threshold for starting renormalization).

Thus leaving 3
p

M(T − M)/T extra entries is enough to ac-
commodate these random variations with probability much
larger than 99.87% even for the severest of DoS attacks.

2.3 Configuration example for Adaptive Net-
Flow

This section provides an example for conservatively con-
figuring Adaptive NetFlow on an OC-48 interface (2488.32
Mbps). When choosing the configuration parameters, our
aim is to ensure that the processor and the memory avail-
able for the flow cache are not overwhelmed under any pos-
sible traffic pattern. The work of finding the right values
for the various parameters is the responsibility of the router
manufacturer. All the router operator has to do is to specify
the reported number of flow records M desired for each one
minute measurement bin. If the memory on the line card is
not sufficient, the router can override the parameter with a
lower value. ANF guarantees that it will never report more
flow records and it will report fewer only for pathological
traffic mixes such as fewer than M large flows generating all
the traffic or an extremely lightly loaded link.

The parameters the router manufacturer needs to deter-
mine are: the maximum sampling rate p0 = 1/N0, the av-
erage number of renormalization operations per processed
packet when renormalization is in progress and the actual
number of flow cache entries the router needs given the pa-
rameter M . By profiling the processor on the line card, the
router manufacturer finds that the average time to process
a sampled packet is tp = 3.4µs and renormalizing an entry
takes on average tr = 1.5µs.2 We first compute the initial
sampling rate and we want it as high as possible so that we
get accurate results even on lightly loaded links. To keep up
before the first renormalization, the per packet processing
time for a link fully loaded with minimum size packets tmin

could be as low as tp, but we choose tmin = tp + tr = 4.9µs
to reduce the amount of memory needed. At a minimum
size of 40 bytes for the IP packets to which we add 4 bytes
of lower layer SONET CHDLC overhead, for our OC-48 we
obtain a maximum sampling rate of 1 in 35 packets.

After the first renormalization starts we will process pack-
ets at a lower rate because the sampling rate decreases, but
we will also need to perform the renormalization. If we
set the renormalization threshold to T = 2M entries, when
we get there, the aim is to free M entries so we reduce
the sampling rate to at least half (if we have entries with a
packet count of more than 1 we will reduce it even more).
The first renormalization is the critical one, as the others
happen when lower sampling rates are in effect. During
renormalization we have to process 2M entries and in the
mean time we can receive up to M new packets so that the
number of entries created does not exceed the number of
entries cleared. With this configuration we need to renor-
malize two entries for every packet received. Since we de-
creased the sampling rate by at least a factor of two, we
receive at most one packet every 9.8µs. It takes 3.4µs to
process it and 2∗1.5µs for the normalization, so the proces-
sor is busy for 6.4µs, so it can keep up. Since we actually
have 3.4µs left for each packet we can set the threshold

2These are the actual values we obtained by profiling our
code on a 750 MHz UltraSPARC-III which has performance
comparable to that of a processor one would expect on an
OC-48 line card.

lower than 2M and still keep up during the first renormal-
ization. By writing down the constraints we get a simple
equation (tminT/M − tp)(T − M) = Ttr. Its solution gives
us the lowest threshold for which the first normalization can
keep up with the rate at which the packets arrive: T/M =

(α +
p

α2 − 4tp/tmin)/2 where α = (tr + tp + tmin)/tmin.
For our example we get T = 1.56M and we need to perform
T/(T −M) = 2.8 renormalizations for each sampled packet.
To account for randomness in the entry clearing decisions
we need to add 3

p
M(T − M)/T = 1.8

√
M entries, so the

number of entries for our example is 1.56M + 1.8
√

M .
ANF operates on time bins. At the end of the bin it

needs to process the flow records collected during the bin
to bring their number down to M and then to buffer them
until they are transmitted to the collection station. Since
our tmin ≥ tp + tr, we can perform one renormalization on
the old entries for each packet in the new bin, so by the
time the number of entries in the new bin reaches T , we
already renormalized all of the old entries, so we need only
M more entries to support repeated bins. This brings our
total to 2.56M + 1.8

√
M entries. For example if the net-

work operator configures M = 64K records per minute, this
will generate a steady reporting traffic (NetFlow 7 fits 27
flow records into an 1500 byte packet) of 486 Kbps and it
will use 168,232 entries that take 10.3 MB of router memory
(NetFlow records use 64 bytes of memory). Note that reli-
able transfer of flow records as advocated by IETF’s IPFIX
workgroup requires buffering of records so that they can be
retransmitted if packets are lost. The M entries for records
from the previous bin we included in the memory needs of
ANF are in fact a buffer and they can significantly reduce
the amount of extra buffering needed in the router.

3. FLOW COUNTING EXTENSION
NetFlow entries record the SYN flag which is set in the

first packet of each TCP connection. Using this informa-
tion, it is possible to accurately estimate the number of
active TCP flows in various aggregates (e.g. web traffic,
traffic from Network A, etc.) even if NetFlow sees only a
sample of the packets [12]. We retain this functionality in
Adaptive NetFlow by setting the SYN flag in the flow entry
when a SYN packet is sampled and maintaining it with pro-
bability xnew/x when renormalization decreases the packet
counter of an entry from x to xnew. As with sampled Net-
Flow, Adaptive NetFlow data does not allow us to accu-
rately estimate the number of non-TCP flows. To address
this shortcoming we propose an optional addition, the Flow
Counting Extension. FCE operates separately from ANF,
and provides its own traffic measurement data whose only
purpose is to support flow counts. FCE has the same high
level properties as ANF: it can handle any traffic mix; it
generates a constant amount of measurement data for each
bin; it guarantees the relative standard deviation of the esti-
mates for aggregates above a certain percentage of the total
traffic; and the only configuration parameter the operator
needs to set is the number of flow records reported per bin.

As a starting point for the development of FCE, we use an
algorithm called “adaptive sampling”, proposed by Wegman
and described by Flajolet [17]. This algorithm solves the
database problem equivalent to estimating the total num-
ber of flows, but we change it to support estimates for the
number of flows of arbitrary aggregates (“slicing and dicing”

Bus

Processor

Small buffer

Forwarding

hardware

headers
packet
1 in N Additional

hardware
FCE

DRAM

headers
all packet

Router line card

Figure 8: The optional Flow Counting Extension re-

quires additional hardware. Since FCE needs to look
at each packet header, to keep up with line speeds
it must be implemented with additional hardware in
high speed routers.

the traffic). We keep a table with all flow identifiers seen in
the traffic along with a hash of the flow ID. When the table
fills, we make space for new entries by deleting the entries
whose flow ID hash does not start with at least one 0 bit.
Then, for each future packet, we insert its flow ID into the
table only if its hash starts with one 0 bit (and it is not al-
ready in the table). When the table fills again, we keep only
the entries whose hashed flow ID start with two 0s (increase
the “depth” to 2) and so on. The output of the original algo-
rithm is the estimate of the total number of flows, computed
by multiplying the number of entries in the table by 2depth.
For example if we only keep the entries whose flow ID hash
starts with two zeroes (depth = 2) we keep a quarter of all
flow IDs, so if we report 1,000 web flows, we estimate that
there were 4,000 web flows in the traffic mix.

We modify the adaptive sampling algorithm to output the
current depth and the list of flow IDs in the table. To esti-
mate the number of flows from a certain aggregate we just
multiply the number of flows from that aggregate present
in the output by 2depth. The problem with this algorithm
is that the number of entries it produces varies between 1
and 0.5 times the table size, and the accuracy of results
varies accordingly. To ensure that we report close to M
entries, we use a table of size 2M , so that after each in-
crease of depth, we have close to M entries. When the bin
ends, if the number of entries is L > M , we perform an
additional cleaning operation to bring the number of entries
close to M . During a bin, the flows kept are those with
flow ID hash h < H/2depth, where H is the maximum hash
value. In the end-of-bin cleaning pass we keep only flows
with h < H/2depth ∗ M/L, and we report together with the
flow IDs a correction factor of N = 2depthL/M .

The function we use to hash flow IDs is a randomly gen-
erated member of the H3 hash function family[7]. Because
of the randomness of this hash function, each flow appears
in the output with a probability of 1/N and therefore the
estimated sizes of the aggregates are unbiased. Assuming
a perfect hash function, the sampling decisions for different
flows are independent. We can use this to show that the
expected number of flows in the output is M , with a small
standard deviation of

p
M(1 − M/L) ≤

p
M/2. We can

also show that we can estimate the traffic of any aggregate

amounting to a fraction f of the total number of flows with a
relative standard deviation of very close to

p
1/(Mf). Thus

FCE provides the same types of guarantees for the accuracy
of flow counts as ANF does for the accuracy of packet counts.

The Flow Counting Extension to Adaptive NetFlow is
needed on high speed links, where we expect the traffic to be
sampled because the processor cannot process each packet.
At these speeds, since FCE needs to process each packet, we
can implement it only using additional hardware (Figure 8).
Computation of the hash function on the flow IDs can be im-
plemented with combinatorial logic that is easy to pipeline.
The table of flow IDs can be implemented with a CAM keyed
on the flow IDs and the hash values. The CAM must sup-
port quick insertion and deletion of all entries matching a
mask. We use this hardware primitive to implement clean-
ing of the CAM when we increase the depth. At the end
of the interval, the flow IDs and their hash values are read
from the CAM, and as the entries are read out the software
performs the final cleaning to reduce the number of entries
to close to M . After a bin is finished, the processor reads
the entries of the CAM at slower than line speed, so we must
provide additional CAM memory to allow recording flows of
the new current bin while the processor works on the previ-
ous bin. A conservative solution is to use two CAMs of size
2M so that the second CAM can operate on the packets of
the new bin while the first one is being read out.

We want to finally note here that the cleaning operation
can be put to other uses too. Much like renormalization
for ANF, additional cleaning operations performed in soft-
ware at the router can produce smaller lists of flow IDs.
Transmitting these progressively smaller summaries at pro-
gressively higher levels of reliability allows RLM-like [20]
graceful degradation of traffic report accuracy in response
to network congestion on the reporting path.

4. EXPERIMENTAL EVALUATION
In our experiments we use eight traces from various times

of the day from OC-48 links at two different ISPs. The
traces are summarized in the technical report [14].

4.1 Evaluation of Adaptive NetFlow
The aim of the experimental evaluation of ANF in this

section is to compare the accuracy of its results with the
theoretical bounds and with NetFlow.

Results from the technical report [14] show that as we
increase the amount of memory the relative error of the ag-
gregates decreases as expected. In Figure 9 we present the
error in the estimates for all applications with more than
0.5% of the traffic, measured in packets, for report sizes of
8K and 256K entries. The plots show the 25th, 50th and
75th precentile over 25 runs. The byte estimates, omitted
for brevity, display very similar trends. The first thing to
notice is that the actual errors are generally below the er-
rors predicted by Lemma 1, but more pronouncedly so for
the large report sizes. The reason for this is that Lemma 1
assumes that all entries have a packet counter of 1, which
is not true in either case, but the counters are lower for the
small report size. It is interesting to note that there are some
outliers such as NNTP for which the actual error is further
from the theoretical bound than for other applications. The
reason is the NNTP has the largest number of packets per
flows over all applications and thus benefits most from our
variance-reducing renormalization.

0.01

0.1

1

10

1 10 100

F
A

S
T

T
R

A
C

K

N
A

P
S

T
E

R
_D

A
T

A
D

N
S

F
T

P
_C

O
N

T
R

O
L

H
T

T
P

S

N
N

T
P

R
T

S
P

S
M

T
P

E
D

O
N

K
E

Y
_T

C
P

U
nc

la
ss

ifi
ed

 T
C

P

F
T

P
_D

A
T

A
N

E
T

B
IO

S
R

E
A

LA
U

D
IO

_U
D

P
H

A
LF

LI
F

E

U
nc

la
ss

ifi
ed

 U
D

P

M
S

_M
E

D
IA

S
Q

L

H
T

T
P

G
N

U
T

E
LL

A

er
ro

r
(%

)

true percent of total packets

8192 measured
8192 theoretical

262144 measured
262144 theoretical

Figure 9: The error in estimating the number of
packets for applications with differing amounts of
traffic, with two different report sizes; vertical bars
show the 25th, 50th, and 75th percentile of standard
error over many runs. The straight lines show the
theoretical standard error for the worst case sce-
nario of all flows having only 1 packet; when run
against a real traffic mix with larger flows, ANF pro-
duces errors which are even lower. This is dramat-
ically illustrated by the very low error of estimates
for NNTP, which has very large flows.

Aggregate % of ANF “Psychic NF”
total bias st.dev bias st.dev

ALL Traffic 100 0.03 0.20 0.00 0.00
HTTP 48. -0.02 0.30 -0.01 0.23

Unclassified TCP 18. 0.11 0.48 -0.00 0.55
ALL UDP Traffic 9.1 0.00 0.51 -0.02 0.81

AS 2914 src 7.6 0.21 0.64 -0.10 1.34
AS 2914 dst 4.9 -0.09 0.80 0.20 0.87

NNTP 3.5 0.09 0.73 0.00 1.38
SMTP 2.2 -0.07 1.59 0.97 2.11
HTTPS 1.6 -0.08 1.99 -0.70 2.30

DNS 1.5 0.34 2.10 -0.36 2.42

Table 2(a): Packet errors

Aggregate % of ANF “Psychic NF”
total bias st.dev. bias st.dev

ALL Traffic 100 0.02 0.28 -0.02 0.32
HTTP 46. 0.02 0.31 -0.01 0.50

Unclassified TCP 24. 0.08 0.64 0.04 0.79
AS 2914 src 10. 0.20 0.72 -0.08 1.76

NNTP 6.4 0.08 0.80 -0.33 1.65
ALL UDP Traffic 3.6 0.00 0.79 -0.13 1.60

AS 2914 dst 3.6 -0.13 1.03 0.44 1.68
SMTP 1.3 -0.28 2.11 1.11 4.31
HTTPS 0.8 -0.18 2.77 -0.38 3.52

DNS 0.3 -0.05 2.36 -0.30 3.38

Table 2(b): Byte errors

Table 2: The bias and standard deviation of errors
for various applications as produced by ANF are not
much different than those of “Psychic NetFlow”.

0.1

1

10

100

128 256 512 1024 2048 4096

%
 e

rr
or

 (
pk

ts
)

packet rate (1024’s of pkts/s)

apps(.*)
apps(HTTP|HTTPS)

srcAS(2914)
apps(DNS)
apps(IRC)

apps(NETBIOS)

Figure 10: Error for the estimates for the number
of packets sent by aggregates as DDoS increases.

To verify that ANF’s renormalization does not introduce
bias or increase error, we compare ANF with a 64K entry
report size to binned NetFlow configured statically with the
sampling rate ANF stabilizes at by the end of the bin which
is a sampling 1 in 57 (we call it “Psychic NetFlow” because it
magically guesses the right sampling rate from the beginning
of the bin). This type of NetFlow obviously could not work
on a live link, as it requires a priori knowledge of the ideal
sampling rate, but we can run it on recorded traces. Tables
2(a) and 2(b) show the results of one such comparison for 25
runs of each algorithm over a single trace bin. For both bytes
and packets, these tables show that the renormalization in
ANF did not introduce bias or increase the error.

4.2 Evaluation of the Flow Counting Exten-
sion

The experimental evaluation of FCE in this section com-
pares the results of FCE with the theoretical bounds and

estimators cM1 and cM2 based on counting the SYN flags
from NetFlow records [13].

Table 3 shows that even for some TCP applications, the
errors of FCE are much better than those for SYN based
estimators, while for others the errors are similar. This re-
flects that the proportion of TCP flows without SYN flags
or with duplicated SYN packets differs for different applica-
tions. And FCE does equally well on aggregates containing
non-TCP flows, where SYN-based estimation does not work.

4.3 Performance under extreme traffic mixes
Finally we show that the memory and bandwidth usage of

ANF and FCE are essentially unaffected by extreme traffic
mixes by testing with a simulated denial of service attack.
We mix from 16 thousand to 6 million packets per second (1
to 360 million packets per minute) into a trace. The Decem-
ber 2003 attack on SCO was 1 million packets per second.
The results presented in the technical report [14] confirm
that the memory and bandwidth usage stay constant for
ANF while increasing significantly for NetFlow.

Figure 10 shows how the errors for the estimates of cer-
tain aggregates change with various levels of DoS for a fixed
configuration of ANF. While the relative errors for most
applications have an increasing trend this does not contra-

dict our theoretical results, because as the size of the at-
tack increases, the legitimate traffic represents a smaller and
smaller percentage of the total traffic.

5. CONCLUSIONS
NetFlow is the traffic measurement solution most widely

used by ISPs to determine the composition of the traffic mix
on network links. However, NetFlow has several important
problems that we address with the improvements proposed
in this paper. We make no claim to have exhausted all the
opportunities for improvement and we express confidence
that the networking community will soon finds further ways
of advancing the state of flow level traffic measurement.

Our Adaptive NetFlow, deployable by a simple software
update to routers, achieves robustness lacking in NetFlow by
adapting the sampling rate to the traffic mix. ANF provably
stays within a fixed memory and reporting bandwidth bud-
get for all possible traffic mixes. Our fast renormalization
method is a key component of Adaptive NetFlow that allows
us to also guarantee that the processor performing NetFlow
at the router can keep up with any traffic mix. Further ad-
vantages of ANF over NetFlow are easy configuration as the
network operator does not need to statically set the sampling
rate, but only the rate at which flow records are produced,
and simpler and more accurate analysis because we match
the time bin model used in traffic analysis.

From sampled NetFlow and ANF data one can give ac-
curate flow counts for the TCP flows in the traffic based on
the SYN flags recorded in the flow entries. To enable con-
sistently accurate counts for non-TCP flows, we propose the
optional Flow Counting Extension that requires the addition
of new hardware to high speed routers.

An important new feature of both ANF and FCE is that
they can easily provide progressively smaller but less accu-
rate summaries which can be transmitted to the collection
station with progressively higher levels of reliability as dis-
cussed by IETF’s IPFIX working group. For both ANF
and FCE we present theoretical analyses that upper bound
the relative error of the estimates produced for large aggre-
gates measured in packets, bytes and respectively flows. We
also prove that these estimates are unbiased. Measurements
on multiple traces of traffic confirm our theoretical analy-
sis. Measurements on traces with synthetic DoS attacks of
various sizes confirm the robustness of our solutions.

6. ACKNOWLEDGEMENTS
Support for this work was provided by NSF Grant ANI-

0137102, DARPA FTN Contract N66001-01-1-8933, and
CAIDA members.

7. REFERENCES
[1] IPMON - packet trace analysis.

http://ipmon.sprintlabs.com/packstat/

packetoverview.php.

[2] Personal conversation with Dave Plonka.

[3] Paul Barford, Jeffrey Kline, David Plonka, and Amos
Ron. A signal analysis of network traffic anomalies. In
Internet Measurement Workshop, November 2002.

[4] Andy Bierman and Juergen Quittek. Packet sampling
(psamp). IETF working group.

[5] N. Brownlee, C. Mills, and G. Ruth. Traffic flow
measurement: Architecture. RFC 2722, October 1999.

Aggregate % of FCE cM1
cM2

total bias st.dev. bias st.dev. bias st.dev.

ALL Traffic (*) 100 0.02 0.96 -35.55 35.55 -25.57 25.58
ALL TCP Traffic 78. 0.10 1.16 -17.39 17.41 -5.78 5.83

HTTP 58. 0.27 1.29 -19.24 19.26 -8.50 8.54
ALL UDP Traffic (*) 20. -0.13 2.26 -100.00 100.00 -96.01 96.01

DNS (*) 8.0 0.03 3.94 -99.26 99.26 -95.31 95.31
Netbios (*) 7.9 -1.97 3.90 -39.27 39.35 -37.37 37.45

AS 2914 src (*) 7.2 0.92 5.43 -15.66 16.06 -5.70 6.69
Unclassified TCP 5.1 2.19 5.60 -47.07 47.17 -27.43 27.59

SMTP 2.3 -0.54 5.96 0.56 5.74 13.50 14.52
ALL ICMP Traffic (*) 1.5 -2.12 8.54 -100.00 100.00 -95.45 95.45

POP 0.3 4.23 19.01 17.71 26.85 32.35 38.17
IRC (*) 0.3 -9.01 18.32 -71.48 71.94 -56.20 56.80

Table 3: The flow count errors and biases in trace1 for various applications. The report sizes are 8K entries

for FCE and 64K entries for cM1 and cM2. Aggregates marked with (*) may contain non-TCP flows.

[6] Nevil Brownlee and Dave Plonka. IP flow information
export (ipfix). IETF working group.

[7] J. Lawrence Carter and Mark N. Wegman. Universal
classes of hash functions. In Journal of Computer and
System Sciences, volume 18, April 1979.

[8] S. Chaudhuri, R. Motwani, and V. Narasayya.
Random sampling for histogram construction: How
much is enough? In Proceedings of the ACM
SIGMOD, 1998.

[9] Baek-Young Choi, Jaesung Park, and Zhi-Li Zhang.
Adaptive random sampling for load change detection.
In SIGMETRICS, 2002. (extended abstract).

[10] Chuck Cranor, Theodore Johnson, Oliver Spatschek,
and Vladislav Shkapenyuk. Gigascope: A stream
database for network applications. In Proceedings of
the ACM SIGMOD, June 2003.

[11] Nick Duffield and Carsten Lund. Predicting resource
usage and estimation accuracy in an IP flow
measurement collection infrastructure. In Internet
Measurement Conference, October 2003.

[12] Nick Duffield, Carsten Lund, and Mikkel Thorup.
Properties and prediction of flow statistics from
sampled packet streams. In SIGCOMM Internet
Measurement Workshop, November 2002.

[13] Nick Duffield, Carsten Lund, and Mikkel Thorup.
Estimating flow distributions from sampled flow
statistics. In Proceedings of the ACM SIGCOMM,
August 2003.

[14] Cristian Estan, Ken Keys, David Moore, and George
Varghese. Building a better NetFlow: Technical
report, 2004. http://www.caida.org/outreach/papers/
2004/tr-2004-03/.

[15] Cristian Estan, George Varghese, and Mike Fisk.
Bitmap algorithms for counting active flows on high
speed links. In Internet Measurement Conference,
October 2003.

[16] Anja Feldmann, Albert Greenberg, Carsten Lund,
Nick Reingold, Jennifer Rexford, and Fred True.
Deriving traffic demands for operational IP networks:
Methodology and experience. In Proceedings of
the ACM SIGCOMM, pages 257–270, August 2000.

[17] Philippe Flajolet. On adaptive sampling. COMPUTG:
Computing (Archive for Informatics and Numerical
Computation), Springer-Verlag, 43, 1990.

[18] Nicolas Hohn and Darryl Veitch. Inverting sampled
traffic. In Internet Measurement Conference, 2003.

[19] Ken Keys, David Moore, Ryan Koga, Edouard
Lagache, Michael Tesch, and k claffy. The architecture
of CoralReef: an Internet traffic monitoring software
suite. In PAM2001. CAIDA, RIPE NCC, April 2001.
http://www.caida.org/outreach/papers/2001/CoralArch/.

[20] Steven McCanne, Van Jacobson, and Martin Vetterli.
Receiver-driven layered multicast. In ACM
SIGCOMM, volume 26,4, pages 117–130, New York,
August 1996. ACM Press.

[21] Keith McCloghrie and Marshall T. Rose. RFC 1213,
March 1991.

[22] David L. Mills. RFC 1305: Network time protocol
(version 3) specification, implementation, March 1992.

[23] D. Moore, V. Paxson, S. Savage, C. Shannon,
S. Staniford, and N. Weaver. The spread of the
sapphire/slammer worm. Technical report, 2003.

[24] Cisco netflow. http://www.cisco.com/warp/public/732/
Tech/netflow.

[25] Vern Paxson. Bro: a system for detecting network
intruders in real-time. In Computer Networks
(Amsterdam, Netherlands: 1999), volume 31, pages
2435–2463, 1999.

[26] Peter Phaal, Sonia Panchen, and Neil McKee. RFC
3176: sFlow, September 2001.

[27] David Plonka. Flowscan: A network traffic flow
reporting and visualization tool. In USENIX LISA,
pages 305–317, December 2000.

[28] Martin Roesch. Snort - lightweight intrusion detection
for networks. In Proceedings of the 13th Systems
Administration Conference. USENIX, 1999.

[29] Sampled NetFlow. http://www.cisco.com/univercd/cc/
td/doc/product/software/ios120/120newft/120limit/

120s/120s11/12s sanf.htm.

