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Abstract— IP address and TCP/UDP port scanning are
critical components of many network attacks. Such scanning
allows attackers to spread a self-propagating worm or collect
detailed information about end-hosts in preparation for at-
tacks. This paper investigates an algorithm to detect TCP-SYN
scanning. Special care is taken to detect even stealthy scanners.
Attackers are detected by tracking the number of half-open
connections generated by each source. However, a source is
only tracked until it is clear that it is not currently scanning.
The computational load of this method is analyzed and it is
found that the method is not computationally intensive and
is suitable for online detection of scanning even on backbone
links. Specifically, on a backbone link investigated it was found
that the total number of sources that needs to be tracked at
any one time is at most a few thousand.

I. INTRODUCTION
Since the early days of the Internet, network attacks have

been a difficult problem [1]. As the economy, infrastructure,
and society become more dependent on the Internet, net-
work attacks pose a problem of more significance. Recently
there have been major self-propagating worm attacks [2],
[3], [4] that have caused significant damage in terms of
labor hours, lost data, and lost service. Beyond the self-
propagating worms, there are numerous other intrusions.
For example, attackers may break into a system and set-
up a server to distribute copyrighted material, to steal
confidential information, or launch attacks on other network
resources. The first step of such intrusions is to gain
information about the systems to be attacked. This initial
step is carried out by a technique known as "scanning",
where the attacker sends a large number of packets to
different IP addresses in search for vulnerable hosts. This
work investigates a method to detect scanning at backbone
routers.

Worms such as Blaster and Code Red [3], [4], [2] search
for vulnerable hosts by sending packets at high rates to
randomly selected IP addresses. If an open port was found
and the port supports an application that has an exploit, then
the found host is infiltrated. In order to propagate the worm
quickly, an infected hosts must scan the address space at
a high rate. However, this makes worm propagation very
obvious and hence easy to detect and stop. A far more
potent way to spread the worm is if the worm itself has
a list of all vulnerable hosts. In this case, the worm does

not have to perform the noticeable scanning and it can
spread at very high rates. One way this can be done is
for the worm designer to scan the address space in advance
and maintain a database. It is possible to catalogue not only
which IPs are active, but to determine the type and version
of the OS and which services are offered for each IP [5],
[6], [7], [8]. When an exploit becomes available, the attacker
could immediately develop a worm that is sent only to the
vulnerable hosts in the database. Since this highly virulent
worm would spread while producing very few anomalous
packets, it would be virtually undetectable.

Since the IP address space only holds merely 232 ad-
dresses, it is possible to send a TCP-SYN to every IP
address in 38 hours over a 10Mbps link. Thus, it is
completely reasonable to expect that attackers will collect,
catalogue, and distribute detailed maps of all end-hosts.
While it is possible to scan the entire address space very
fast, an attacker may want to scan more discretely and at a
slow rate, where the whole address space is scanned over
a period of weeks or even months. Also, the attacker may
only scan a fraction of the address space until a vulnerable
host is found. This vulnerable host is then infiltrated and the
scanning proceeds from this host. Thus, the entire address
space can be scanned, but no single host will scan the whole
address space. While difficult, the goal of this work is to
detect these types of stealthy scanning.

There has been investigations on the detection of scan-
ning at firewalls [9], [10]. A firewall detects scanning only
if the attacker scans many of the organization’s addresses.
If the attacker scans addresses at random, the scans will
infrequently fall into the organization’s address space. The
firewall would require a long-term memory to detect such
behavior. On the other hand, if the detection is done at a tier-
1 or 2 router through which a large portion of the attackers
scans pass, even a stealthy scanner can be detected. It has
been shown there is a relatively small set of routers through
which a large number of end-to-end connections pass [11].
Thus, by sharing information collected at these routers, it
may be possible to detect even the most stealthy scanners.

The goal of this paper is to detect scanning at backbone
routers. We focus on a common form of scanning known as
SYN scanning where the attacker sends TCP-SYN packets



[12], [6]. The method investigated here examines each TCP
flow. An alternative method is[2] to sample only a fraction
of all flows. however, such methods cannot detect stealthy
scanning. The detection scheme investigated here is quite
thorough in the sense that the source of each TCP-SYN
packet is tracked for at least a short period of time. Thus,
even stealthy scanners can be detected. Nonetheless, it is
found that when performing this detection on a backbone
link that carried data at an average rate of 378 Mbps, the
number of hosts that need to be tracked simultaneously is
less than a few thousand. Maintaining and searching through
a list of a few thousand addresses is within the abilities of
today’s processors. We make one critical assumption in this
analysis: packets with spoofed source addresses are filtered
out or limited in number.

The remainder of the paper proceeds as follows. The
next three sections provide some background. After a brief
discussion of the data utilized throughout this investigation,
the basics of TCP connection establishment are reviewed
followed by some further discussion about the scanning
activity found in the data set. Section V begins the dis-
cussion of the algorithm. Section VI explores the computa-
tional efficiency of this method. Section VII provides some
concluding remarks and discusses future work.

II. DATA DESCRIPTION
The data used in this work was collected in a network

of a US tier-1 Internet Service Provider. The trace was
captured by Linux-based monitor with Dag 4.11 network
card from the University of Waikato [13] and Endace[14].
It contains 44 bytes of each packet, enough to include the
IP and TCP/UDP headers.

The trace analyzed in this paper (D09S in the notation
of [15]) was taken on May 7, 2003, 10:00am to 12:00
noon at the Seattle, WA to San Jose CA, SONET OC-48
(2.5 Gbps) link of CAIDA’s Backbone 2. This link was
15% utilized with an average bitrate of 378 Mbps. TCP
contributes 93.5% packets and 97.8% of all bytes observed
in that measurement. Out of those, 42.3 M packets have
SYN flag set (7.2% of all TCP packets).

III. TCP CONNECTION ESTABLISHMENT
In order to initialize a connection, TCP uses a three-

way hand-shake [16].1 The first step of the connection
establishment is when the client sends a TCP packet with
the SYN flag set (a TCP-SYN packet). Upon receiving this
packet, the server responds with a TCP packet with both the
SYN and ACK flags set (a TCP-SYN/ACK packet). When
the client receives the TCP-SYN/ACK, it responds with a
TCP packet with the ACK flag set (a TCP-ACK packet) or
with a TCP data packet that also has the ACK flag set. When
the server receives the ACK from the client, the connection
establishment phase of TCP is complete.

If the client does not receive a SYN/ACK from the
server, it will resend the SYN typically after waiting for

1For brevity, we call the opening end client and the responding end
server.
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Fig. 1. Distribution of the duration of TCP connection establishment.

3 seconds. If a SYN/ACK still does not arrive, the client
will send another SYN after 6 seconds. This doubling in
time continues for a total of 4 or 6 attempts (the exact
number of attempts depends on the implementation). In
most implementations, the maximum time between SYNs
is 64 seconds [16]. Similarly, if the server does not receive
an ACK within the time-out period, it will resent the
SYN/ACK in the same pattern as the SYNs are sent.

At an intermediate router, the TCP connection is assumed
to be complete when an ACK packet arrives from the client
and is destined for the server. At this point, the router can
assume that the destination has responded to the SYN and
hence exists2. For detecting SYN scanning, the duration of
the connection establishment plays a critical role. Figure 1
shows the cumulative distribution of the connection estab-
lishment duration. For the link that we observe, it was found
that the mean duration of the connection establishment is
close to 0.3 seconds. Note that this duration is not simply a
function of the round-trip time, but also a function of how
long it takes for a server to respond to a SYN.

To give an idea of TCP packets’ statistics, we list in
Table I the percentage of most frequent types (those with
over 1% packets on at least one link direction). An in-
depth description of these and other datasets can be found
in [15]. The most popular types are SYN, ACK, FIN, SYN-
ACK, PUSH, RST (reset) and FIN-PUSH. The last two rows
contain sum of the percentages and the overall percentage
of TCP packets in observed packets and bytes. Comparison
shows that TCP accounts for 85% or more packets and 95%
bytes, and that almost every TCP packet has one of the listed
types. Among those, ACK and PUSH are most frequent
and voluminous. Opening and closing packets (SYN, SYN-
ACK, FIN) make up 2-4% of all packets in our data;
RST packets vary between 1-2%. These observations are
confirmed by our analysis of other traces. The percentage
of SYN packets for D09S analyzed here is close to 3%.

IV. TCP-SYN SCANNING

In this section we examine the behavior of scanners. First
we introduce some definitions. We separate TCP flows in
two categories. The first is a normal TCP flow or a non-pure

2Future work will investigate the situation where the source mimics a
normal connection by sending unrequested ACK packets.



TABLE I
TCP FLAGS FIELD. D09, BB2, MAY 2003.

Northbound (dir.1) Southbound (dir.0)
Flags % pkt % byte % pkt % byte
SYN 2.57 0.20 2.91 0.27
RST 1.22 0.08 1.16 0.09
ACK 56.49 67.12 58.74 71.84
FIN 2.63 0.21 3.48 0.28
SYN-ACK 2.06 0.16 3.86 0.34
PUSH 24.10 27.40 21.56 23.35
FIN-PUSH 0.47 0.44 1.23 1.55
Sum 89.53 95.61 92.94 97.71
TCP 90.08 97.10 93.47 97.76

SYN flow as described in section III. The second is a flow
that only contains TCP-SYN packets. We call such flows
pure SYN flows. Note that in the case of half open TCP
connections and pure SYN flows, the SYN has not been
responded to. We call say that such SYNs are unanswered.
We call the number of unique destinations that a sources
has sent unanswered SYNs to be the degree of the source.
We denote the degree of source σ to be dσ.

The hallmark of a scanning source is that it sends pure
SYN flows to a large number of destinations. The data
examined here was found to contain many scanners (e.g.,
251 sources sent more than 200 pure SYN flows). Figure
2 gives an idea of the number and the behavior of the
scanners. Note that the smallest number of non-pure SYN
flows shown here is 0. That is indicated by 0 on y-axis.

Sources that appear in the lower right of the plot are the
ones that are mostly likely to be scanning as they send pure
SYN flows to a huge number of destinations, but few or no
normal TCP connections. Indeed, if the source sends more
than 1000 pure SYN flows within two hours, the source is
likely scanning. A mode careful analysis by examining the
domain name of the addresses, ports, size and frequency
of file transmission, etc confirms this conclusion. However,
it is not clear whether the sources that send a moderate
number of pure SYN flows and non pure SYN flows are
scanning. We examined some of those sources by looking
at their. We found that some of those sources that merely
sent 50 pure SYN flows were likely scanners. Figure 2
shows that it is not trivial to draw a line between scanning
sources and normal source. This difficulty remains even
when further information such as the non-pure SYN degree
is considered. For this reason, the approach here will detect
sources that scan a relatively small number of destinations.
It is expected that offline methods would perform evaluation
of the sources detected by the method presented here.

There are some types of activity that appear to be scan-
ning but are filtered out and not examined here. Specifically,
some mail servers will try to open a connection on port
113. However, many firewalls block port 113. Hence, these
mail servers will send a large number of pure SYN flows.
Similarly, port 25 is often blocked and, as a result, mail
servers will send many pure SYN flows to port 25. Also,
to search for peers to share files, Gnutella and Kazaa will
scan the address space. Thus, along with ports 113 and 25,
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Fig. 2. Pure-SYN degree versus Non-Pure SYN Degree. Clearly, the
sources falling inside the circles are scanners. But there are many other
scanning sources as well.

flows on port 6346, 6347, and 1214 are filtered out of the
data set.

V. TRACKING SOURCES

An attacker can scan the address space while utilizing
a low packet rate. This is especially the case for stealthy
scanners that send TCP-SYNs at a slow but steady rate.
In order to detect such scanners, it is necessary to collect
information about the hosts that send TCP-SYNs. The
algorithm used to detect TCP-SYN scanners is as follows.

Assume that a SYN arrives at time t0 and no other
SYNs have arrived from this source before this point. We
denote dσ (t) to be the degree observed t seconds since
the source is being tracked. Thus, dσ (t) is the number of
unique destinations that source σ sent unanswered SYNs to
during the time interval (t0, t0 + t). In the case of a normal
TCP connection establishment, dσ (t) = 1 for 0 ≤ t < T
and dσ (t) = 0 for t ≥ T , where an ACK arrived from the
source at time t0 + T .

In order for a router to determine dσ, it must observe
and process packets from this source, that is the router must
track the source. When a packet arrives, it is first determined
if the packet is a TCP packet. If so, it is determined if
the source is already being tracked. Note that this requires
searching through the list of sources that are being tracked.
In order to minimize the computational load, it is necessary
to minimize the size of this list.

Suppose that the just arrived packet is a SYN packet. If
the source is not being tracked, then a new data structure
is allocated and the source and destination of the SYN is
recorded along with the arrival time of the SYN. If the
source is being tracked, then the source’s data structure is
examined to see if a SYN destined to this destination has
been observed. If so, then the time that this SYN arrived is
updated. On the other hand, if the data structure does not
contain an entry for this destination, a new entry is made
which contains the address of the destination.

Now if the packet is a TCP-ACK or a TCP data packet,
then the list of tracked sources is also searched for this
source. If the source is found to not be tracked, then there
is no change to the list of tracked sources. On the other
hand, if this source is being tracked and there is an entry



for this destination address, the entry is deleted because the
TCP-ACK or data packet indicates that the connection is
now completely open. If there are no more entries for this
source, the data structure for this source is deleted and the
source is no longer tracked until another SYN arrives form
this source.

Note that while a connection remains in its half open
state, the source is tracked. In the case that a source has
sent SYNs that are never answered, i.e., pure SYN flows,
then this source is tracked for a longer period of time. As
mentioned, it is critical to keep the list of tracked source
small. Therefore, the objective is to not track sources of
pure SYN flows for too long.

In order to reduce the computational load, it is necessary
to limit the number of sources that are being tracked.
Thus, it is critical to stop tracking non-scanning sources
as soon as possible while ensuring that these sources are
indeed not scanning. Since the detection of stealthy scanners
is the objective of this work, the goal of not missing
scanners takes precedence over concerns of computational
load. However, as will be shown in the next section, the
impact of detecting even stealthy scanners does not add
a significant load to a detector that can detect aggressive
scanning.

We will assume that it is not possible for a source to be
scanning if the degree of the source that sent pure SYN
flows grows at a rate that is less than R for some R.
Therefore, if a source does not send a SYN in the 1/R
seconds after a the first SYN was sent of a pure SYN
flow, then this source does not need to be tracked until it
sends another SYN. In general, source σ cannot be currently
scanning if t > dσ (t) /R, where t is the time that has
elapsed since this source has been tracked and dσ is defined
in Section V.

As discussed in Section V, since SYNs may be answered,
an unanswered SYN might or might not lead to a pure SYN
flow. Thus, the value of dσ (t) might decrease over time. If
dσ (t) > H (t) , it does not necessarily mean that the source
is scanning. We define H (T ) to be the threshold such that
if a source sends more than H (T ) SYNs within T seconds,
then the source is declared to be a scanner. Specifically, we
define

H (t) =

½
V for t < T
V t

T for t ≥ T
. (1)

To accommodate this, we define dστ (t) as the number
of distinct destinations that source σ has sent unanswered
SYNs to in the time interval [to, to + t− τ ], where to is the
time when the source started to be tracked. Thus, dσ0 (t) =
dσ (t) and dσ64 (t) is the number of pure SYN flows detected
from time to to time to+ t− 64. Note that SYNs that have
not been answered within 64 seconds can be counted as a
pure SYN flows since most implementations of TCP give
up if a connection is not established within 64 seconds [16].
Thus, we can say

source σ is scanning if dσ64 (t) > H (t− 64) .

However, from Figure 1, we see that a large majority of
connections are established within 1 second. Thus, a faster,
but slightly less accurate detector is to use

source σ is scanning if dσ1 (t) > H (t− 1) . (2)

While there is a possibility of more sophisticated ap-
proaches, in this paper we present the results based on (2).

In summary the algorithm is
1) When a SYN arrives, determine if this SYN is for an

ongoing pure SYN flow, or a new pure SYN flow.
2) If this SYN is for a new pure SYN flow and the source

of this SYN is σ where σ is not being tracked, then
set dσ (0) = 1 and begin to track σ. If σ is being
tracked, then increment dσ (t) .

3) At periodic moments check if t > dσ (t) /R. If so,
the stop tracking σ, otherwise continue to track σ.

4) When a SYN arrives for a tracked flow, check if
dσ1 (t) > H (t− 1). If so, then declare σ to be a likely
scanner and pass this address and the collected data
to the off-line verification by more sophisticated al-
gorithms (e.g. those recognizing signatures of specific
scanning tools.)

VI. COMPUTATION LOAD

When tracking sources, the source address of each TCP
packet must be compared with the sources of the addresses
that are being tracked. Searching through this list of tracked
sources is the principal computational load for this method.
In this section we examine the length of this list. We will
see that the list of tracked sources is surprisingly small
indicating that such detection could be performed even on
backbone routers.

Recall that searching through an ordered list of length N
can be accomplished in O (log (N)) comparisons. In our
experiments, a straightforward implementation of a binary
tree was utilized. However, if a suitable hashing function is
found, then a hash table would likely further reduced the
computation. Furthermore, high speed network processors
are becoming available. For example, Intel’s network pro-
cessor IXP2800 can process packets and provide 23 billion
operations per second. For the link examined, this algorithm
would require memory accesses roughly every 100ns, well
within the reach of today’s processors such as IXP2800.

The list of tracked sources is made up of three types of
sources: sources that are establishing normal TCP connec-
tions, sources that are not scanning, but send pure SYN
flows, and sources that are scanning or likely scanning. We
examine these parts of the list in the following sections.

Three approaches to examining the computational load
are taken. In Section VI-E, the detection algorithm is tested
with the data described in Section II. A second approach is
to directly analyze the computational load. A third approach
is to develop models of the network traffic and determine
the computational load based on the models. These last
two approaches are closely related and are presented in
the following subsections. Beyond the conclusion that such
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Fig. 3. Complementary distribution of the rate that TCP connections
are established by a source. The solid blue curve shows the empirical
distribution from observations, while the dashed red curve shows a fitted
Pareto distribution.

detection appears to be computationally feasible, are the
results that the model of the network traffic are simple
and fit well. Similarly, we will see that models for the
computational load are simple and fit well.

A. Computational load of detecting normal connection es-
tablishments

One might expect that at any particular moment there are
a huge number of half open connections. Indeed, the data
set investigated here had 38.8 million TCP connections in
two hours. Since the source of the half open connections
must be tracked, these sources can potentially cause very
large lists. However, as will be shown, this is not the case.
There are two principal reasons that this list is short. First,
the duration of the connection establishment typically lasts
around 300 ms. Thus, the number of simultaneously on-
going connection establishment is limited. And the second,
there are a few sources that generate a large fraction
of the connections. Indeed, some of these hosts establish
connections so frequently that multiple establishments from
the same source are tracked at the same time. Figure 3
shows the complementary cumulative distribution of the
rate at which each source establishes TCP connections.
Specifically, it shows the fraction of sources that made
connections faster than c, where c is the independent
variable on the X-axis. We see that there are some sources
that made connections with a huge number of destinations.
For example, 1 in 10000 sources made connections with
100 or more destinations. These sources contribute to make
large fraction of connections.

In order to understand how long the list of tracked sources
will be, we model the list as a M/G/∞ queuing system.
The entry in the list of tracked sources can hold information
about a large number of ongoing connection establishments,
i.e. is a infinite number of servers. The rate that customers
arrive into this system is the rate at which the source
attempts to establish connections. The service time in the
system is the time it takes to establish a TCP connection.
Hence, when all queues in the system are empty, there is
no entry in the list for the source. Thus, the fraction of time
that this source is being tracked is the same as this fraction
of time that this infinite queue system is not empty. To

get an estimate of this number, we assume that the rate of
connection arrivals is a Poisson process. In this case, the
results of M/G/∞ queueing system yield that the fraction
of time that the source is not tracked is

P

µ
source σ not
being tracked

¯̄̄̄
average time between connection

establishments for source σ

¶

= exp

⎛⎜⎜⎝−1/
average time between connection

establishments for source σ

1/
average duration of a TCP

connection establishment

⎞⎟⎟⎠ .

We denote the average duration of connection establishment
as C̄ and, as discussed in Section III, C̄ was found to be
296 ms.

Now suppose that over a time interval of length T , we
find that a source has established Q connections, yielding
an average time between connections of Q/T . Also, during
this same time period, there were NQ,T such sources
observed. Such sources yield a list with average length of³
1− e−

QC̄
T

´
NQ,T . The total list size is

Normal connection list length =
X
Q

³
1− e−

QC̄
T

´
NQ,T

(3)
For the link examined, this value came to be 759.33.

In the limit as T →∞, the above can be written as

Normal connection list length =

Z ∞
β

³
1− e−C̄v

´
N̄φ (v) dv,

(4)
where v is the connection establishment rate, N̄ is the total
number of source addresses that pass through the router and
φ (v) is the density3 of nodes with connection establishment
rate v.

Figure 3 shows a fitted Pareto density for φ with exponent
α = 0.69 and a minimum value of β = 1.35× 10−4:

φα (v) =
αβa

va+1
for v ≥ β.

Defining

G (α) :=

Z ∞
β

³
1− e−C̄v

´
φα (v) dv

we get

Normal connection list length = N̄G (α) .

Figure 4 shows the value of G for different α. For the
parameters found from the Backbone 2 link, N̄ = 322562,
we get normal connection list length = 811. This value if
slightly larger than the value given by (3).

While it seems plausible that φ typically has a Pareto dis-
tribution, more work is required to verify if the parameters

3The distribution found in (4) indicates that the mean connection
establishment rate is infinite. However, examining the Figure 3, it can be
seen that for the high connection establishment rate the distribution is not
well modeled by Pareto distribution and likely has a finite mean. However,
this is irrelevant for this analysis as any source with high connection
establishment rate will be tracked continuously according to the algorithm.
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Fig. 4. Fraction of total sources that are simultaneously tracked. Here
only flows that established connections are considered.

are consistent over other links. For example, Figure 4 shows
that G (α) grows quickly as α decreases. On the other hand,
the computation is dependent on the log of the length of the
list. Thus, the computation might not be greatly affected by
small variations in the parameters. While it is possible that α
and β remain fairly constant for different links, N̄ depends
on the data rate carried by the link. To see how this might
be true, note that α and β and the distribution of the files
accessed define the end-users demand. Thus, assuming that
the users’ demand remain fairly constant, a variation in the
data rate carried over the link can only be accomplished by
changing N̄ . However, more experimentation is required to
verify this claim.

The analysis presented (both the direct approach via
(3) or model-based approach via (4)) are conservative
because they assume that each source establishes connec-
tions according to a Poisson process. This assumption pro-
duces widely spaced connection establishments. In reality, a
source may establish connections in a more bursty fashion.
As a result, some connection establishments might be more
closely spaced so that they overlap more than predicted by
the Poisson model. Since the total time in which a source is
tracked is reduced when connection establishments overlap,
bursty connection establishments by a source would reduce
the length of the list.
B. Computational load due to non-scanning pure SYN
sources

While scanning sources will send a moderate or large
number of pure SYN flows, normal, non-malicious, end-
hosts will also occasionally send pure SYN flows. The
source of these pure SYN flows must be tracked to ensure
that they are not scanning. In the case of normal TCP
connection establishments, it was critical to realize that a
small number of sources engaged in establishing a large
number of connections. This allows the tracking of a single
source to track many open SYN simultaneously. However,
when tracking non-scanning sources, there is no similar
benefit. Furthermore, while a normal connection establish-
ment requires a source to be tracked for roughly 300ms, the
source of a pure SYN flow must be tracked for far longer.
Nonetheless, the number of sources that send such pure
SYN flows is small enough that the number of such sources
that is tracked at any one time is small. In this section
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Fig. 5. List length of non-scanning pure SYN flows as a function of
maximum number of allowable scans in two hours.

the computational load associated with these non-scanning
sources of pure SYN flows is analyzed. Specifically, we find
the number of such sources that are simultaneously tracked.
As in the previous section, we take two approaches. First we
apply some simple analysis to estimate the number. Second,
we model the distributions of the traffic and estimate the
number based on the model. While more work is required,
it is hoped that the model parameters derived from the data
examined here is similar to the model parameters for other
backbone links, modulo the data rate carried by the link.

In this section the assumption that packets with spoofed
address have been filtered out is critical. If this is not the
case, then a single source can send a large number of SYNs
each with different source addresses as is the case in a DoS
SYN attack. Such an attack would certainly cause the list of
tracked sources to grow very large. However, as mentioned,
there has been extensive work on filtering packets with
spoofed source addressed. For example, the Cisco’s IOS
software Release 11.1(17)CC has such capabilities.

To analyze the computational load due to non-scanning
pure SYN sources, we assume that the threshold for scan-
ning is of the form (1). Thus, a source is not scanning
if the total number of pure SYN flows sent within T
seconds is less than V . As mentioned, for each pure SYN
flow that a source sends, the sources is tracked for a
period of 1/ (V/T ). However, if a source is declared to be
scanning, then it is continuously tracked. Thus, if dα (T )
is the number of pure SYN flows from source σ and
dσ (T ) < V , then the total time that this source will be
tracked dσ (T ) / (V/T ). The fraction of time that this source
is being tracked during the T interval is dσ (T ) /V . Thus,
the source σ adds dσ (T ) /V to the average number of
sources being simultaneously tracked. The average number
of sources simultaneously being tracked isX

dσ(T )≤V
dσ (T )

1

V
. (5)

Figure 5 shows this value for different values of V .
On the other hand, the average rate that a source sends

pure SYN flows is dσ (T ) /T . We denote this rate as rσ.
With the threshold of the form (1), sources that send pure
SYN flows at an average rate that is less than V/T are not
scanning. Let f (r) be the fraction of sources that send pure
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Fig. 6. Complementary distribution of the rate of a source sending pure
SYNs.

SYN flows at rate r. Since each pure SYN flow leads to
a source being tracked for T/V seconds, the sources that
send pure SYN flows at rate r add Ñf (r) rT/V to the list
length, where Ñ is the total number of sources. Thus, the
number of non-scanning sources of pure SYN flows that
are simultaneously tracked is

Ñ
X
r<V

T

f (r) r
T

V
,

where Ñ is the total number of sources. Figure 6 shows the
complementary distribution of r. This distribution is well
approximated by a Pareto distribution with α = 0.6 and
β = 10−4 and is shown by the solid straight line in the
Figure 6. Assuming this continuous distribution, the average
length of the list of non-scanning sources that are tracked
because of pure SYN flows is

Ñ
1

R

Z
r<R

f (r) rdr, (6)

where a source is declared to be scanning if it sends pure
SYN flows at an average rate of R over the time interval
T (i.e., R = V/T ). Figure 5 shows this value (6) for
different values of R. We see that using the model with
a continuous distribution via (6) yields the same result as
the direct approach given by (5).

In the data examined here we found that the number of
sources that send pure SYN flows is 14736 in the data
studied here, or 4.5% of the total sources that sent any
TCP SYN. Further data analysis is required to determine if
this percentage is similar to the percentage found on other
backbone links. Similarly, further investigation is required
to determine if the distribution of the model parameter, α
and β, are similar to those found on other links.

Like the analysis in the previous section, the analysis here
is conservative. Here it is assumed that when a source sends
pure SYN flows, these flows are widely spaced. However,
this is often not the case as a non-scanning source may be
attempting to connect to a disconnected host and hence send
many SYNs in a short period of time. In this case, these
SYNs are tracked together, while the analysis here assumes
that each flow is tracked individually.
C. Computational load due to scanning sources
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Fig. 7. The number of scanning sources as a function of the maximum
number of allowable scans in two hours.

The objective of this work is to detect and track sources
that are scanning, i.e., sources that send more than H (t)
pure SYN flows during a time period of length t. There is
no way to limit the impact of tracking these sources as the
objective is to track them. Once a source is declared to be
scanning, all packets that come from it should be collected
for later investigation. Nonetheless, when a packet arrives,
it must be determined if the source of the packet is known
to be a scanner, is currently being tracked, or not being
tracked. This classification requires searching through the
list of addresses and the list must include the sources that
are known scanners.

The analysis of computational load of tracking scanning
sources is similar to load of non-scanning sources. Specif-
ically, the number of scanning sources isX

dσ(T )>V

1. (7)

Employing f , the distribution of the rate that sources send
pure SYN flows, the number of scanning sources is

Ñ

Z
r>R

f (r) dr. (8)

Figure 7 shows the number of detected scanners as a
function of different thresholds V in (1). Again, the direct
approach and model-based approach agree.
D. Total computational load

The total computational load is the sum of the compu-
tational load of the three parts, tracking TCP connection
establishments, tracking non-scanning sources, and tracking
scanning sources. Left-hand plot of Figure 8 shows the total
average number of simultaneously tracked sources, both
from direct analysis and using traffic models. Right-hand
plot of Figure 8 also shows the same number but shown
in log-scale. Since searching through a list of length N
takes O (log (N)) operations, the right-hand figure is an
indication of the computational load due for the detection
method. Note the computational load varies quite slowly.

In the case of the link examined, this detection method
would require between 10 and 12 memory accesses per
TCP packet. Since this link had a packet arrival rate of
83K packets per second (SYN packet arrival rate is under
4,000/sec) this detection method would require an memory
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Fig. 8. Total Computational Burden. The left-hand figure shows the
computational burden in terms of the length of the list of source that are
simultaneously tracked. The right-hand figure is the same as the left-hand
figure, except that the log of the length of the list is taken.

0 4000 6000 80001550

1600

1650

1700

1750

1800

1850

1900

lis
t l

en
gt

h

sample number
1550 1600 1650 1700 1750 1800 1850 19000

100

200

300

400

500

600

700

fre
qu

en
cy

sample number
20000 4000 6000 80001550

1600

1650

1700

1750

1800

1850

1900

lis
t l

en
gt

h

sample number
1550 1600 1650 1700 1750 1800 1850 19000

100

200

300

400

500

600

700

fre
qu

en
cy

sample number
2000

Fig. 9. The left-hand side shows a time series of the number of
simultaneously tracked sources of non-pure SYN flows. The right-hand
side shows the histogram of this time series. Here the threshold is 50 pure
SYN flows in two hours.

access roughly once every 100 ns; this is well with the reach
of today’s microprocessors.

E. Detection test
The algorithm was tested on the data collect from the

backbone link described in Section II. The right-hand plot
in Figure 9 shows the number of sources tracked while the
left-hand plot shows the histogram of the number of tracked
sources. Here the source is declared to be a scanner if it
sends more than 50 pure SYN flows in two hours. It can be
seen that the variance of the list size appears to be small.
The algorithm was further tested for different thresholds.
Figure 10 shows the mean list length (left side) and number
of scanners (right side) as a function of different thresholds
V . It can be seen that the actual list length in these figures
is smaller than that given by the analysis in the previous
sections. In light of the discussion at the end of sections
VI-A and VI-B, we expect this to be the case.

VII. CONCLUSION

The method investigated here tracks every source that
sends an unanswered TCP-SYN. As a result, it is able to
detect even stealthy scanners. On the other hand, since
most hosts do not send an unanswered SYN very fre-
quently, tracking such sources is computational feasible.
The analysis indicates that the computational complexity
of the method is not sensitive to variations in the traffic
characteristics. Thus, we expect that detecting TCP-SYN
scanning at the backbone is feasible. Of course, a key
assumption is that packets with spoofed source addresses
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Fig. 10. The left-hand side shows the mean list length versus threshold
V. The right-hand side shows the number of scanners found versus
threshold V.

are filtered. Nonetheless, this analysis shows that some
stateful filtering at even backbone links is feasible.

This detection scheme does not detect all types of scan-
ning. However, for most other types of scanning, detection
can be carried out perhaps by employing a scheme similar
to the one presented here. For example, there are other
scanning techniques that do not use SYNs. Some of these
are easily detectable since they send TCP packets with
the flags set in a nonsensical fashion (e.g., both SYN and
FIN set). Detecting these types of scanning is the focus of
ongoing effort.
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