
The Top Speed of Flash Worms

Stuart Staniford∗
Nevis Networks

David Moore†
CAIDA

Vern Paxson‡
ICSI

Nicholas Weaver§
ICSI

ABSTRACT
Flash worms follow a precomputed spread tree using prior knowl-
edge of all systems vulnerable to the worm’s exploit. In previ-
ous work we suggested that a flash worm could saturate one mil-
lion vulnerable hosts on the Internet in under 30 seconds [18]. We
grossly over-estimated.
In this paper, we revisit the problem in the context of single

packet UDP worms (inspired by Slammer and Witty). Simulating
a flash version of Slammer, calibrated by current Internet latency
measurements and observed worm packet delivery rates, we show
that a worm could saturate 95% of one million vulnerable hosts on
the Internet in 510 milliseconds. A similar worm using a TCP based
service could 95% saturate in 1.3 seconds.
The speeds above are achieved with flat infection trees and pack-

ets sent at line rates. Such worms are vulnerable to recently pro-
posed worm containment techniques [12, 16, 25]. To avoid this,
flash worms should slow down and use deeper, narrower trees. We
explore the resilience of such spread trees when the list of vulner-
able addresses is inaccurate. Finally, we explore the implications
of flash worms for containment defenses: such defenses must cor-
relate information from multiple sites in order to detect the worm,
but the speed of the worm will defeat this correlation unless a cer-
tain fraction of traffic is artificially delayed in case it later proves to
be a worm.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Invasive software

General Terms
Security

∗Email: stuart@nevisnetworks.com
†Email: dmoore@caida.org
‡Email: vern@icir.org
§Email: nweaver@icsi.berkeley.edu

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WORM04 October 29, 2004, Washington, DC, USA
Copyright 2004 ACM 1-581113-970-5/04/0010 ...$5.00.

Keywords
worms, simulation, modeling, Flash worm

1. INTRODUCTION
Since Code Red in July 2001 [11], worms have been of great in-

terest in the security research community. This is because worms
can spread so fast that existing signature-based anti-virus and
intrusion-prevention defenses risk being irrelevant; signatures can-
not be manually generated fast enough [12, 18]. Thus much effort
has gone into both analyzing the dynamics of worm spread [2, 10,
18] and designing automated worm containment mechanisms [7,
12, 13, 16, 17, 20, 24, 25].
Most of this effort has been directed against random scanning

worms; here a worm instance finds further victims by guessing
random Internet addresses and then attacking whatever is at that
address. Scanning worms are only a subset of known worm spread
algorithms [23].
The premise of a flash worm is that a worm releaser has some-

how acquired a list of vulnerable addresses, perhaps by stealthy
scanning of the target address space or perhaps by obtaining a
database of parties to the vulnerable protocol. The worm releaser,
in advance, computes an efficient spread tree and encodes it in the
worm. This allows the worm to be far more efficient than a scan-
ning worm; it does not make large numbers of wild guesses for
every successful infection. Instead, it successfully infects on most
attempts. This makes it less vulnerable to containment defenses
based on looking for missed connections [7, 16, 24], or too many
connections [20, 25].
Although flash worms have not been reported in the wild, they

are of interest for two reasons:

• Flash worms are the fastest possible worms and so may be
created someday by worm writers needing to control a vul-
nerable population with extreme speed

• Because of the off-line nature of the spread map computa-
tion, flash worms are a useful thought experiment for explor-
ing the worst case performance of containment defenses. The
spread map can be adjusted to be whatever will be most dif-
ficult for the defense, and then the worm made as efficient as
possible given that constraint.

The speed of flash worms is affected by several variables. If
the worm tree is K-way (meaning each instance infects K other
hosts), then the number of generations to infect N vulnerable hosts
is O(logK N). The total infection time is bounded by this number
multiplied by the time required to infect a generation. However,
more complex issues arise: a large list of N addresses must be de-
livered from some initial nodes, and this may be a significant con-

straint on speed. Thus analysis of a flash design looks at both the
tree shape and the means of address distribution.
A difficulty for the flash worm releaser is a lack of robustness if

the list of vulnerable addresses is imperfect. Since it is assembled
in advance, and networks constantly change, the list is likely to be
more-or-less out of date by the time of use. This has two effects.
Firstly, a certain proportion of actually vulnerable and reachable
machines may not be on the list, thus preventing the worm from
saturating as fully as otherwise possible. More seriously, some ad-
dresses on the list may not be vulnerable. If such nodes are near the
base of the spread tree, they may prevent large numbers of vulner-
able machines from being infected by the worm. Very deep spread
trees are particularly prone to this. Thus in thinking about flash
worms, we need to explore the issue of robustness as well as speed.
In the rest of the paper, we explore (in Section 2) how to make

flash worms very fast in light of recent knowledge about worms,
and how to estimate the speed of such worms without actually re-
leasing them. We derive the performance estimates quoted in the
abstract. Next, in Section 3, we study the effect of a fraction of
invulnerable systems included in the spread tree by mistake. We
describe some ways of making flash worms more robust to this and
explore their effectiveness. In Section 4, we look at the interaction
of flash worms with worm containment systems. After exploring
the small amount of related work in Section 5, we conclude in Sec-
tion 6.

2. THE DESIGN OF FAST FLASHWORMS
In earlier work [18], we performed a simple analysis of a 7-layer

10-way spread tree with a 5KB worm. We estimated the generation
time at 3 seconds (based on 50% utilization of a 256Kbps link)
giving a total infection time of less than 30 seconds.
The parameter space of flash worms is much larger than that

one scenario. In particular, the size of the worm constrains how
quickly it can be distributed, and there are tradeoffs in the tree
design. A shallow tree risks that the early nodes will be a bottle-
neck, while making it deeper increases the number of generations
required. This slows the worm and makes it less resilient to errors.

2.1 Lessons from Slammer and Witty
The Slammer worm [10, 22] of January 2003 was the fastest

scanning worm to date by far and is likely close to the lower bound
on the size of a worm. Data on observed Slammer infections (and
on those of the similar Witty worm) provide us with estimates for
packet rate and minimum code size in future flash worms.
Slammer infected Microsoft’s SQL server. A single UDP packet

served as exploit and worm and required no acknowledgment. The
size of the data was 376 bytes, giving a 404 byte IP packet. This
consisted of the following sections:

• IP header

• UDP header

• Data to overflow buffer and gain control

• Code to find the addresses of needed functions.

• Code to initialize a UDP socket

• Code to seed the pseudo-random number generator

• Code to generate a random address

• Code to copy the worm to the address via the socket

It is difficult to see how a worm could be much smaller. This
functionality is all essential and so the only way to shrink the worm
further is to tighten the instructions used to implement it.
It is also hard to see how a worm could emit packets much faster

than this. Minimal code is in the loop to generate a new address
and send a packet. So it is particularly interesting to see how fast
Slammer emitted packets in practice. We had access to two datasets
of outbound packet traces from active slammer infections: one from
a national laboratory (with 13 infections), and one from a large
university campus (with 33 infections). A histogram of the packet
rates is shown in Figure 1. The average speed of these Slammer
hosts is 4700 packets per second (pps).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1.5 4.5 7.5 10.5 13.5 16.5 19.5 22.5 25.5 28.5 31.5

Slammer Host Speed (Thousands of PPS)

P
ro

p
o

rt
io

n
 i

n
 b

in

Figure 1: Distribution of speeds of 46 outbound Slammer in-
fections. The histogram bins are 3000 pps wide, with the center
value shown on the x-axis.

There are some systematic problems with the distribution in Fig-
ure 1. Firstly, the data come from only two sites which are not
representative. Most obviously, these sites likely have larger band-
width than the average site. Additionally, the 46 observations are
not independent of each other since they had to share uplink band-
width with the other infections at their site.
The reader might wonder why we don’t study the distribution of

inbound scanning rates of Slammer infections (scaling up the rates
by the ratio of total Internet address space to the address space of
the observing sites). The reason is that the Slammer random num-
ber generator was flawed and had a complex and system-dependent
cycle structure making it very difficult to extrapolate from observa-
tions at one site to the Internet.
A data set without this problem was that for the Witty worm, a

single packet UDP scanning worm which infected ISS intrusion de-
tection systems in March 2000 and which had a good uniform ran-
dom number generator. As described in more detail in [14], a repre-
sentative one hour period of the Witty infection was chosen and the
observed scan rate over that hour was measured for each infected
host. Since the observations were made on UCSD and CAIDA’s
/8 network telescope, the sending rate is estimated by scaling the
observed rate by 256, the inverse of the fraction of address space
monitored. Figure 2 shows the cumulative distribution function of
the estimated sending rates. Over 60% of the distribution is be-
tween 11 pps and 60 pps. For the average size of a Witty packet,
1090 bytes, this corresponds to being between 96kbps and 512kbps
(typical broadband speeds).

0

20

40

60

80

100

0.1 1 10 100 1000 10000 100000

Packets Per Second

C
u

m
u

la
ti

ve
 P

er
ce

n
ta

g
e

Figure 2: Cumulative distribution of packet rates for Witty in-
fected addresses.

2.2 First Estimates for a UDP Flash Worm
The Witty hosts show a larger range of speeds than the Slammer

hosts, even noting the more than doubled size of Witty packets. It
seems the well-connected sites where we have outbound Slammer
data represent the upper end of the speed distribution. In this pa-
per, however, we are interested in the top speed of flash worms.
We can assume that an attacker is sophisticated enough to estimate
bandwidth in advance (through known techniques [3]) and pick fast
sites. Thus we made the assumption that our flashworms draw crit-
ical internal nodes in the spread tree from the top 5% of the Witty
speed distribution, with the speed scaled linearly for packet size.
The 95% point of this data occurs at 1000 pps or about 1 Mbps. At
the Slammer packet size of 404 bytes, this would be 2700 pps.
A key issue in single-packet flash worm design is that the time

between successive packets from a fast host is small compared to
the time to cross the Internet. The global Internet latency distribu-
tion is shown in Figure 3.
This figure comes from round-trip time (RTT) measurements

in CAIDA’s skitter datasets [1]. We used observations from 22
geographically diverse measurement boxes to over one million
globally distributed destinations for the entire month of February
2004. There were over 182 million RTT measurements in this pe-
riod. The 22 monitors were divided into four geographic regions:
Asia/Oceania (4), North America - West (7), North America - East
(6), and Europe (5). Among monitors within the same region, the
RTT distributions were similar and were combined to produce a
single RTT distribution per region. Since the probed destinations
are geographically diverse, each of these distributions represent the
expected latencies for a host in that region to reach a random host
on the Internet. To compute a distribution representing the laten-
cies between arbitrary hosts, we averaged these regional distribu-
tions based on the prevalence of hosts in each region. For publicly !
routed IPv4 addresses, the four regions above have about the same
weight. Finally, we halved the RTT measurements to give one-way
latencies. We checked that the exact weighting of the four regions
does not grossly change the shape of the distribution.
The mean of the latency distribution is 103ms, corresponding to

an average of 277 packets issued (at 2700 pps) before the first one
arrives. This motivates a design in which the flash infection tree is

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300 350 400

Packet Traversal Time (ms)

P
e
rc

e
n

ta
g

e
 i

n
 0

.5
 m

s
b

in

Figure 3: Histogram of globally averaged Internet latencies for
February 2004 as determined by CAIDA’s Skitter infrastruc-
ture. See the text for details.

shallow and broad. Furthermore, the attacker has control over the
initial node from which the worm is launched. So this should be
a host with an unusually high capacity to deliver network pack-
ets located at a site with excellent connectivity to the Internet. We
assume the initial node can deliver 750 Mbps of worm IP packets
(75% of a 1 Gbps link)1. That is a little over 240000 Slammer-sized
packets per second.
In this paper, we assume that the target vulnerable population

is N = 1000000 (one million hosts—somewhat larger than the
360, 000 infected by Code Red [11]). Thus in much less than a sec-
ond, the initial host can directly infect a first generation of roughly
5, 000 - 50, 000 intermediate nodes, leaving each of those with only
20-200 hosts to infect to saturate the population. There would be
no need for a third layer in the tree.
This implies that the address list for the intermediate hosts can fit

in the same packet as the worm; 200 addresses only consumes 800
bytes. A flash version of Slammer need only be slightly different
than the original: the address list of nodes to be infected would be
carried immediately after the end of the code, and the final loop
could traverse that list sending out packets to infect it (instead of
generating pseudo-random addresses).
To optimize this design, let us begin by assuming fixed con-

stant latency of L (taken to be our average measured latency of
103ms), fixed constant bandwidth for the intermediate nodes of b
bytes per second (taken to be 1 Mbps the 95% point on the Witty
distribution), and the initial node bandwidth of B bytes per second
(750Mbps as discussed). The length of the worm isW +4A, where
A is the fixed number of addresses supplied to each node. If there
are n intermediate nodes, then nA + n = N , so that n = N

A+1
.

The total infection time is thus

tI =
N(W + 4A)

(A + 1)B
+

AW

b
+ 2L (1)

(assuming that the secondary nodes get sent a worm with a zero
length address list).
This curve is shown in Figure 4. The optimum is to use a

secondary-node address list of length A = 107. Thus in the se-
1The attacker may need to install special packet drivers on the com-
promised server to achieve this performance!

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0 100 200 300 400 500 600 700 800

Address List Length

T
o

ta
l

In
fe

ct
io

n
 T

im
e
 (

se
c)

Figure 4: Estimated speed to infect one million hosts assuming
constant latency of 103ms, initial node available bandwidth of
750Mbps, and fixed secondary node bandwidth of 1 Mbps. The
worm is assumed to be 404 bytes + 4 bytes per address, and the
graph plots total infection time versus the globally fixed sec-
ondary address list size.

quel we study a worm that has 9260 secondary nodes infecting 107
addresses each for a total of 1000080. The initial packets will be
832 bytes, and with 750Mbps can be delivered at a little better than
118000 pps.
Now the initial node has to place different address lists in each

copy of the worm and so its code must be a little more complex; the
releaser must build a special worm injector for that node. It must
have a copy of the base worm, and the full address list (4N bytes
in size), and copy relevant parts of the address list into each copy
of the worm before sending it out. The initial code can even give
earlier secondary nodes more of the address list, but this turns out
not to be very useful when B >> b.

2.3 Simulating UDP Flash Worm Speed
The analysis in the previous section is too crude; for two issues—

Internet latency and secondary node bandwidth—it picks the aver-
age value instead of drawing from the broad distribution. To do bet-
ter, we developed a Monte Carlo simulator. This models in detail
the time taken in each stage of the worm:

• The linear delay before the i′th packet is issued from the
initial node.

• The stochastic delay for a packet to travel from the initial
node to an intermediate node

• The delay associated with a stochastically picked rate of
packet issue for the intermediate node.

• The stochastic latency for a packet to travel from the inter-
mediate node to a leaf node.

For the latency distribution, we used the Skitter data in Figure 3,
and for the distribution of packet rates we used the upper five per-
centiles of the Witty data in Figure 2. In both cases we used inde-
pendent picks from the distributions in question. It was beyond the

scope of this paper to optimize the worm for the latency topology
of the Internet, since we do not have latency data from all points
of the Internet to all other points with which to assess such opti-
mizations. However, it is reasonable to suppose such optimization
would speed up the worm a little more.
The results for our 9620×107 spread tree are shown in Figure 5,

which is the cumulative distribution function for machine infection
time across 100 versions of the worm with different random seeds.
The graph indicates clearly that such flash worms can indeed be
extraordinarily fast—infecting 95% of hosts in 510ms, and 99% in
1.2s. There is a long tail at the end due to the long tail in Internet
latency data; some parts of the Internet are poorly connected and
take a few seconds to reach.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

Time (seconds)

C
u

m
u

la
ti

v
e
 F

ra
ct

io
n

 I
n

fe
ct

e
d

Figure 5: The proportion of one million and eighty hosts com-
promised by our fastest UDP worm at different times, averaged
over 100 simulation runs.

We note that this worm would not be limited by congestion in the
Internet core. Even with all 9260 hosts producing 1 Mbps plus, the
total bandwidth required by the worm is only O(10 Gbps), which is
small on the scale of the Internet and compares favorably with the
165 Gbps peak bandwidth usage of Slammer [10].

2.4 TCP Flash Worms
Can these results be extended to TCP services? If so, then our

results are more grave; TCP offers worm writers a wealth of addi-
tional services to exploit. In this section we explore these issues.
We conclude that top-speed propagation is viable for TCP worms,
too, at the cost of an extra round-trip in latency to establish the
connection and double the bandwidth if we want to quickly recover
from loss.
To provide reliable data delivery, TCP requires more complex

network interaction. This first affects us by requiring an extra
round-trip time to establish a connection. This is true even if the
target TCP receiver employs poor initial sequence numbers provid-
ing we cannot guess the sequence number in a completely blind
fashion. Thus, the worm must send two additional 40-byte packets,
the initial SYN and the acknowledgment of the receiver’s SYN-
ACK. (In principle this latter could be bundled with the data the
worm sends, but there may be TCPs that require a separate ack to
complete the handshake.)
We assume that the initial window offered by the target TCP

receiver is W packets. While W varies across the Internet, we can

take it as fixed by assuming that the worm is targeting a particular
vulnerable operating system and service. (In reality,W is expressed
in bytes, usually ranging between 8 KB and 64 KB, but here we use
full-sized packets for ease of discussion.)
Assume transmitting the worm requires k full-sized packets. We

can divide the discussion into two categories: small worms, for
which k ≤ W , and large worms with k > W . Small worms fit
entirely within the receiver’s initial offered window, and so on es-
tablishing the connection we can immediately send the packets en
masse without keeping state. That is, whenever the worm receives
a SYN ACK, it can statelessly derive the sequence numbers needed
to transmit the entire worm.
Large worms must keep state so that the worm knows which se-

quence numbers to use when transmitting after the initial flight.
This could be avoided by transmitting stop-and-go—one packet per
round trip—but at the cost of a major loss of performance. In the
absence of packet loss, the sender can often get away with having
more data in flight than the receiver’s advertised window. This is
because as long as the data streams into the receiver in order, and
the receiver processes it quickly enough, the window will continue
to advance as the data arrives. Thus it is possible to try to send a
large worm in the same fashion as a small worm. However, this
trick fails badly in the presence of packet loss: the window will
cease to advance, and the loss will be amplified because all of the
excess packets will be discarded on delivery.
How does recovery from packet loss affect worm speed? Sup-

pose we can model packet loss as independent and occurring with
probability p which is constant.2 Given this, the probability that the
worm requires retransmission is 1 − (1 − p)k. For example, for
p = 0.005 and k = 8, about 4% of the worms require retransmis-
sion. We could simply tolerate this attrition, or we could take steps
to recover from it. A simple step would be to just send the worm
twice (which a TCP receiver will readily tolerate). This would
lower the 4% to about 0.02%, since now the probability that a given
segment is not successfully received falls to p2 = 0.000025.
If maximum-sized packets are 1500 bytes and W is 64 KB of

packets, then we can transmit k = 43 packets without risking
packet loss amplified by packets arriving outside the window. In
this case, 19% of the worms will require retransmission, but re-
transmitting it en masse leads to only 0.11% propagation failure,
still tolerable.
If p or n are significantly higher than the values used above, or if

in the second case W is significantly lower, then sending en masse
and recovering via redundant transmission turns less favorable. In
this case, we might need to adapt more complex schemes such as
using a timer-driven retransmission queue, which could slow the
worm’s propagation. Alternatively, the worm may be better off us-
ing the same resiliency mechanisms discussed in the next section
for tolerating errors in the initial vulnerable address list. We leave
this analysis for future work, but note that a few tens of KB is am-
ple “budget” to build an effective TCP worm (perhaps one that can
then bootstrap in additional functionality later). Code Red was 4KB
and Nimda was 60KB. Thus, we believe the above values are fairly
plausible for today’s Internet and worms.
A final issue for large worms concerns the rate at which the worm

transmits the k packets. In the absence of the “ack clocking” pro-
vided by TCP’s slow start, there is no direct guidance the sender
can use in order to balance between filling the transmission pipe
but also avoiding overrunning any intermediary buffers. However,
the sender could round-robin through its set of current connections
2This is a gross simplification, but a realistic model incorporating
bursty heterogeneous loss rates [26] is beyond the scope of this
paper.

as a way of spatially spreading out the traffic it transmits to avoid
stressing any particular path beyond its own path into the Internet
core.
We believe a TCP worm could be written to be not much larger

than Slammer. In addition to that 404 bytes, it needs a few more
ioctl calls to set up a low level socket to send crafted SYN pack-
ets, and to set up a separate thread to listen for SYN-ACKs and
send out copies of the worm. We estimate 600 bytes total. Such a
worm could send out SYNs at line rate, confident that the SYN-
ACKs would come back slower due to latency spread. The initial
node can maintain a big enough buffer for the SYN-ACKs and the
secondary nodes only send out a small number of SYNs. Both will
likely be limited by the latency of the SYN-ACKs returning rather
than the small amount of time required to deliver all the worms at
their respective line rates.
To estimate the performance of such a small TCP flash worm,

we repeated the Monte Carlo simulation we performed for the UDP
worm with the latency increased by a factor of three for the hand-
shake and the outbound delivery rates adjusted for 40 byte SYN
packets. The results are shown in Figure 6. This simulation pre-
dicts 95% compromise after 1.3s, and 99% compromise after 3.3s.
Thus TCP flash worms are a little slower than UDP ones because
of the handshake latency, but can still be very fast.

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

Time (seconds)

P
ro

p
o

rt
io

n
 c

o
m

p
ro

m
is

e
d

Figure 6: Proportion of one million and eighty hosts compro-
mised by fast TCP worm as a function of time.

3. RESILIENCE TO IMPERFECT MAPS
What if a flash worm uses an imperfect list of vulnerable ad-

dresses? This could happen for several reasons. If an unreliable
diagnostic procedure is used to decide what hosts are vulnerable,
then the list will contain errors. Even with a perfect diagnostic pro-
cedure, the list will grow out of date as machines are patched, re-
configured, restored from old media, and so on. The older the list
is, the more errors it will have. There are two kinds of list errors:
a false negative, where an address is not on the list, but is in fact a
reachable vulnerable address, and a false positive, where an address
on the list is not really vulnerable.
The effect of false negatives is simple. If a proportion ρ of vul-

nerable addresses are false negatives, then the flash worm can only
ever saturate a 1−ρ proportion of addresses it should have compro-
mised under ideal circumstances (for the worm releaser). However,

the spread of the worm is otherwise unaffected, and we don’t con-
sider false negatives any further in this paper.
The effect of false positives is more significant, since key nodes

high in the spread tree may be invulnerable, causing the entire sub-
tree below that node to remain uninfected. In the rest of this section,
we analyze quantitatively the impact of this on the flash worm, and
discuss some cures.

3.1 Modeling Flash Worm Resilience
We assume that a fraction σ addresses on the list are invulnera-

ble, and that all nodes are equally likely to be false positives. We
take the initial node to be infected at the outset with complete cer-
tainty; otherwise the attacker will choose a different initial node!
Consider a worm spread tree in which the branching factors at

the ith level areKi for i = 0 . . . imax, and the branching at the leaf
nodes Kimax = 0. Thus our earlier simulated design had K0 =
9260, K1 = 107, K2 = 0.
We want to compute the probability τ that a given node ends up

uninfected. The worm releaser would like τ to be as small as pos-
sible, while network defenders would prefer a large value. A given
node will remain uninfected if any ancestor on the tree is invulner-
able, or it itself is invulnerable. To put the same thing another way,
it will only get infected if it and every node above it are vulnerable.
Thus for a node at level i, the probability of it failing to be infected
is governed by

1− τi = (1− σ)i (2)

τi = 1− (1− σ)i (3)

To find the aggregate τ , we average across all tree levels:

τ =
1

N

imax∑
i=1

(
1− (1− σ)i

) i−1∏
j=0

Kj (4)

Thus for our earlier example,

τ =
9260σ + 990820(2σ − σ2)

1000080
(5)

Equation 5 is plotted in Figure 7, where it can be seen that errors
in this broad shallow tree are not too serious, never more than dou-
bling the infection failures over the invulnerable hosts. If the list
is of somewhat reasonable quality, the worm will work. Similarly,
this kind of worm can tolerate modest rates of packet loss without
failing.
Failures become more serious in deep narrow trees. Consider a

binary tree, which in twenty levels (including level zero), can cause
an infection of total size 1048574 (excluding the initial node). The
polynomial in σ that arises from Equation 4 is too large to repro-
duce here, but we plot the infection failure rate τ as a function of
the invulnerability rate τ in Figure 8.
Clearly, the binary tree is much more fragile with even a few

percent of list errors greatly lowering the worm’s success rate, and
20% invulnerable machines causing near total failure of the worm.
The reason is that the average host is only infected after many lay-
ers of the spread tree have successfully executed their infections,
and the chances of one or more of those layers having an error is
excellent if the list’s invulnerability rate is significant at all.
The main point of Figure 8 is this: a binary flash tree with no

mechanism to tolerate errors is too fragile to be useful.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Invulnerability Rate

In
fe

ct
io

n
 F

a
il

u
re

 R
a
te

Figure 7: Proportion of uninfected addresses vs proportion of
invulnerable addresses for the 9620× 107 tree.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Invulnerability Rate

In
fe

ct
io

n
 F

a
il

u
re

 R
a
te

Figure 8: Proportion of uninfected addresses vs proportion of
invulnerable addresses for a 20 level binary tree.

3.2 Resilient Flash Worms
The worm writer has two tools to make flash worms more re-

silient. One is to add acknowledgments to the worm so that nodes
will realize if their children do not get infected and will take cor-
rective action. The second is to add redundancy into the infection
tree (which will become a DAG as a result), so that if one path fails,
others will be available and the tree as a whole will not be pruned.
For the case of shallow fast flash worms, the mild fragility to

false positives that they suffer from can be solved very readily with
acknowledgments. The only issue in need of addressing is the pos-
sibility that some intermediate nodes might be invulnerable (if a
leaf node is invulnerable, there is nothing the worm can do but ac-
cept the fact that the list of truly vulnerable hosts was smaller than
realized). Acknowledgments can be achieved by simply adding the
initial node to the end of the list of addresses in each intermediate
node worm. This will cause a copy of the worm to be sent back
when each intermediate worm is done. The total downstream band-
width required for this will be less than the upstream bandwidth
needed to send out the worms originally, since the acknowledg-
ments will not have address lists. The code on the initial node will
need an extra thread to receive and collate these worm copies, but
since there will be limited overlap between the time sending ou! t
worms and the time receiving them, this should not cause a prob-
lem. When an acknowledgment is not received after a short time,
the initial node can substitute a different address for the original
node. Note that the worms at the intermediate nodes do not need to
have any special code for creating acknowledgments (it’s just an-
other address to send the worm to), or handling acknowledgments
(the leaf nodes do not acknowledge).
For deeper infection trees, the issues are more complex. Ac-

knowledgments here require that the intermediate worm nodes be
multi-threaded (in order to garner acknowledgments efficiently) or
slow down greatly waiting for an acknowledgment after each infec-
tion attempt.
It may be simpler, and will certainly be faster, for the worm to

always double infect everything. This is simple and robust. For ex-
ample, in the binary tree, one way to do this is that, at each level,
a node first infects its own two descendants, and then sends worm
copies to the two descendants of its sibling, just in case the sibling
turned out to be invulnerable. The sibling does the same in reverse.
This is illustrated in Figure 9. The effect of this is to make it less
likely that a portion of the tree will fail—now both siblings must be
invulnerable to prevent the tree below them being infected.
To analyze the effect of this, let us again think about a node at

level i. For it to get infected, a path down the infection tree must
make it through every level. The probability that it itself will fail
to be vulnerable is just σ. There are two paths down to it at level
i − 1. Both will be blocked only with probability σ2. It turns out
that at all higher levels, there are also only two paths down through
that level. The reader may be surprised at this, but staring at Fig-
ure 9 for a while, it should become apparent that while a node has
two parents, with four links up to the next level, because the two
parents are siblings, and siblings get infected only from the same
two nodes, the four links collapse onto only two grandparents, and
so on indefinitely.
Thus the chance of a node failing to be infected is σ2 at all these

Figure 9: Scheme for doubling up worm delivery for resilience.
Each node infects its own children, and then its sibling’s chil-
dren, in case the sibling did not get infected.

levels.3 So,

1− τi = (1− σ2)i−1(1− σ) (6)

Averaging over all levels as before,

τ =
1

2imax+1 − 1

imax∑
i=1

2i
[
1− (1− σ2)i−1(1− σ)

]
(7)

The resilience plot for this doubled up flash worm is shown in
Figure 10. As can be seen, the performance is much better than
the single tree design examined in Figure 8. In that case, just a
few percent defects in the target list caused a near complete loss of
infection rate. With doubling up, there is still significant loss, but it
is not catastrophic. At 20% defects in this list, the worm saturates
half of the total it should. Thus doubling up has made an intolerable
situation for the worm writer tolerable (if not excellent - the list will
still need to be fairly clean).

3.3 K independent K-way trees
Another approach to resilience is to note that, in a K-way tree,

the non-leaf nodes use a fraction 1/K of the total nodes. This is
since

1

K
+

1

K2
+

1

K3
+ . . . =

1

K − 1
(8)

Therefore there are alwaysK different sets of internal nodes which
are completely independent (in the sense that nodes used in an in-
ternal node in one tree only ever appear as leaves in the otherK−1
trees). Thus we can start the flash worm using these multiple inde-
pendent trees simultaneously, and this increases resilience, since
there is no possibility of a failure in one tree also causing a failure
in another tree. There is some price in code complexity, since now
the worm on a leaf node must listen for possible new worms and
extract and infect their address list (the broad variation in Internet
3This does not appear to be necessarily true in K-way trees where
K > 2. There, more complex schemes for doubling up are possible
in which siblings mix-and-match how they reinforce each other. In
some cases, this appears to allow more than two paths through a
level to some nodes. We have not yet fully explored the situation in
these broader trees.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Invulnerability Rate

In
fe

ct
io

n
 F

a
il

u
re

 R
a
te

Figure 10: Proportion of uninfected addresses vs proportion of
invulnerable addresses for a twenty level binary tree with dou-
bling up as depicted in Figure 9. This should be contrasted with
Figure 8 which showed the resilience of the twenty level binary
tree without doubling up.

latencies means each tree is likely to infect at least some of its leaf
nodes before other trees have finished infecting all of their internal
nodes).
The failure rate in these trees can be computed as follows. There

are K paths to a given node. The node will be uninfected if either
(with probability σ) it’s invulnerable itself, or it’s not invulnera-
ble (multiply by 1 − σ) but no path reaches it through all vulner-
able nodes. The probabilities of the K paths being blocked can be
combined multiplicatively since they are independent. K − 1 of
the paths are of length imax − 1, since the node is a leaf with re-
spect to those trees. The probability of blockage in those cases is
1−(1−σ)imax−1. The last case is shorter since the node is internal
at level i in that tree, so we only get 1 − (1 − σ)i−1, and we then
have to average everything over i, weighted by the size of the level.
Putting all this together:

τ = σ + (1− σ)(1− (1− σ)imax−1)K−1 × S (9)

where

S =
1

Kimax − 1

imax−1∑
i=1

Ki
[
1− (1− σ)i−1

]
(10)

We compared the following designs:

• two 20-layer 2-way trees (1048575 hosts),

• three 14-layer 3-way trees (2391484 hosts),

• four 11-layer 4-way trees (1398101 hosts),

• five 10-layer 5-way trees (2441406 hosts)

• ten 7-layer 10-way trees (1111111 hosts)

• twenty 6-layer 20-way trees (3368421)

Figure 11 summarizes the resilience of these designs. Obviously,
the more independent trees, the less fragile the design is. What is

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Invulnerability Rate

In
fe

ct
io

n
 F

ai
lu

re
 R

at
e

2 x 2-way
3 x 3-way
4 x 4-way
5 x 5-way
10 x 10-way
20 x 20-way

Figure 11: Proportion of uninfected addresses vs proportion
of invulnerable addresses for K independent K-way trees for
K = 2, 3, 4, 5, 10, 20.

surprising is that two independent trees doesn’t work as well as the
doubling up scheme covered in the previous section, and one has to
get to four independent trees to be as good or better at all invulner-
ability rates. We believe this is because with two independent trees,
all it takes for a host to not be infected is for there to be at least
one invulnerable node on both paths to that host (the unique path
in each of the independent trees). With doubling up, there are two
paths to a host at any level, but since they cross over at every level,
there are effectively 2i paths to a node at level i, but they are not
all independent. To prevent infection of that level i node, it requires
that there be two invulnerable machines at the same level in the tree
above the node. That is less likely and so the doubling up is! more
resilient than independent trees.
A multitree approach may not increase the bandwidth signifi-

cantly except for single packet UDP worms. A multitree worm
could have the first successful infection transfer over the entire
worm body, while subsequent infections only transfer the hitlist.
Thus the additional bandwidth cost for a K tree worm is K times
more transfers of the hitlist, but no additional transfers of the worm
body. For a TCP worm, the SYN-ACK to a new infection attempt
could carry information about whether the worm was needed, or
only the hit-list. However, for single packet UDP worms, the hitlist
will be in flight before anything is known about the need for it, so
there, K-way trees increase total bandwidth demand by a factor of
K.
Likewise, the multitree approach does not slow the worm.

Rather, it offers a faster infection tree than a conventional binary
flash worm, as it is the first appearance in the infection trees where
a system will be compromised, offering some of the benefit of a
shallower worm.
However, it will make the worm somewhat more vulnerable to

detection, and to this we now turn.

4. AVOIDINGCONTAINMENTDEFENSES
There are several mechanisms which a flash worm author could

employ to avoid worm defenses: slow the worm to avoid detection,
reduce the degree K at each node in the tree to make the traffic
anomaly signal less clear, or add redundancy into the flash worm’s
propagation network to route around incompletely-deployed worm
defenses.
Slowing the worm would work well to avoid existing scanning

containment techniques. The worm could avoid the Williamson
new-destination metric [25] by limiting each instance to scanning
one new destination per second. It likely can avoid TRW-based de-
tectors [6] without even needing to slow down, because TRW re-
lies upon scanners making mostly failed connections, while a flash
worm’s connections will often be successful.
Even without rate-limiting, a flash worm using a binary tree

structure (or, more generally, low K) will be undetected by either
scan-containment algorithm, because the number of victims con-
tacted by each copy of the worm is lower than the threshold re-
quired for the algorithms to make a decision.
Similarly, a flash worm naturally avoids dark-address/dark-port

detectors [4, 9], as the worm author already knows which target sys-
tems are probably live and which are nonexistent. This is again be-
cause the scanning-related anomalies (contacting otherwise-unused
addresses) do not appear in a flash worm.
However, there are two detectors likely to detect a flash worm:

honeyfarms [19] and EarlyBird-style network detectors [15, 8].
During the hitlist creation, it is difficult for the attacker to distin-
guish between the honeypots and live systems, so the flash worm’s
targeting list will likely include some of the honeypots. Similarly,
the EarlyBird-style detector (searching for statistical anomalies in
the frequency of common content patterns) should detect a flash
worm unless the attacker can suitably randomize the exploit or
route around the detection locations. Slowing a flashworm’s propa-
gation might allow it to evade an EarlyBird detector, but would not
help in evading honeypot detectors. Thus, even a very slow flash
worm, with each copy contacting a new victim hourly, would prob-
ably not be stealthy when considered by humans.
Additionally, for a very high-fanout flash worm, either a

Williamson new destination metric [25, 20] or a similar super-
spreader detector [21] could detect and block the point of initial
infection. This would only work if two conditions hold: the flash
worm has very high fanout (optimized for speed), and the defense
is present at initial point of infection. If a high-fanout worm uses
multiple initial points of infection, all the initial infection points
would need to be protected by containment devices for such de-
vices to stop the spread.
Yet detection is only part of the problem: the worm must also be

blocked if a defense is to be effective. Worms move too fast to wait
for human response, and an automated response must outrun the
worm [13]. This poses a problem for EarlyBird detectors, which
must wait until they have enough evidence to draw a conclusion,
by which time the worm is well on its way. A honeypot may suc-
ceed in detecting the worm early, but what can it tell the rest of the
network that will be effective everywhere within a second? Thus, it
is likely that detection of flash worms will need to be done broadly
in the network, and suspicious but not conclusive patterns of traffic
deliberately delayed until a conclusion can be reached.
It appears that the optimum solution for the attacker—

considering the plausible near-term worm defenses—is for a flash
worm author to simply ignore the defenses and concentrate on mak-
ing the worm as fast and reliable as possible, rather than slowing
the worm to avoid detection. Any system behind a fully working
defense can simply be considered as resistant, which the worm au-

thor counters by using the resiliency mechanisms outlined in the
previous sections, combined with optimizing for minimum infec-
tion time.
Thus, for the defender, the current best hope is to keep the list of

vulnerable addresses out of the hands of the attacker.

5. RELATEDWORK
Flash worms were first discussed in earlier work by the present

authors [18] in conjunction with a discussion of Warhol worms (op-
timized scanning worms). In that reference, we just introduced the
concept of flash worms, and pointed out that they would be very
fast, since the saturation time was the product of the logarithm of
the size of the vulnerable population times the latency for each gen-
eration to infect the next. Since the latter could reasonably be ex-
pected to be in the seconds at worst, we argued that a 7 generation
10-way design could comfortably saturate a million vulnerable ad-
dresses in less than 30 seconds. We mentioned that the flash design
would be fragile and that the fragility could be addressed by dou-
bling up (or n-replication), but performed no quantitative analysis
on the resilience under any of these schemes.
A different class of very fast worms was noted by Hindocha and

Chien [5]. They observed that Instant Messenger (IM) networks can
support very rapid topological [23] worms due to a combination
of sizable buddy lists and short latency times for sending of mes-
sages. They perform back-of-the-envelope calculations for various
notional parameter sets describing the topology of the IM network
and the generational latency, and come up with values ranging from
six seconds to 157 seconds to saturate 500, 000 machines. Thus
these modes are slower than a flashworm, but still respectably fast,
assuming Hindocha and Chien’s approximations of IM topology
are sufficiently accurate.
The fastest worm seen in the wild so far was Slammer [10]. That

was a random scanning worm, but saturated over 90% of vulnerable
machines in under 10 minutes, and appears to have mainly been
limited by bandwidth. The early exponential spread had an 8.5s
time constant.

6. CONCLUSIONS
In this paper, we performed detailed analysis of how long a flash

worm might take to spread on the contemporary Internet. These
analyses use simulations based on actual data about Internet laten-
cies and observed packet delivery rates by worms. Flash worms can
complete their spread extremly quickly — with most infections oc-
curing in much less than a second for single packet UDP worms
and only a few seconds for small TCP worms. Anyone designing
worm defenses needs to bear these time factors in mind.
Further, we analyzed the resiliency of flash worms to errors in

their target lists and to automated worm containment defenses.
Shallow trees are fairly resilient to list errors, but more vulnerable
to containment defenses. Deep trees are very hard to contain, but
need additional resiliency mechanisms to tolerate an imperfect list.
Given those mechanisms, flashworms using deep trees can tolerate
modest proportions of list errors or containment defenses.

7. ACKNOWLEDGMENTS
This research was supported in part by Nevis Networks,

NSF Trusted Computing Grant CCR-0311690, Cisco Systems
University Research Program, DARPA FTN Contract N66001-
010108933, NSF grant IDR/ANI-0205519, and NSF/DHS under
grant NRT-0335290. Gary Grim first suggested to us the idea of a
stealthy Internet worm with a precomputed spread tree.

8. REFERENCES
[1] CAIDA. Skitter Datasets.

http://www.caida.org/tools/measurement/skitter/.
[2] Z. Chen, L. Gao, and K. Kwiat. Modeling the Spread of

Active Worms. In IEEE INFOCOM, 2003.
[3] C. Dovrolis, R. Prasad, N. Brownlee, and k. claffy.

Bandwidth Estimation: Metrics, Measurement Techniques,
and Tools. IEEE Network, 2004.

[4] Forescout. Wormscout,
http://www.forescout.com/wormscout.html.

[5] N. Hindocha and E. Chien. Malicious Threats and
Vulnerabilities in Instant Messaging. Technical report,
Symantec, 2003.

[6] J. Jung, V. Paxson, A. W. Berger, and H. B. Nan. Fast
Portscan Detection Using Sequential Hypothesis Testing. In
2004 IEEE Symposium on Security and Privacy, to appear,
2004.

[7] J. Jung and S. Schechter. Fast Detection of Scanning Worms
Using Reverse Sequential Hypothesis Testing and
Credit-Based Connection Rate Limiting. Submitted to Usenix
Security 2004, 2004.

[8] H.-A. Kim and B. Karp. Autograph: Toward Automated,
Distributed Worm Signature Detection. In Proceedings of the
14th USENIX Security Symposium. USENIX, August 2004.

[9] Mirage Networks. http://www.miragenetworks.com/.
[10] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford,

and N. Weaver. Inside the Slammer Worm. IEEE Magazine
of Security and Privacy, pages 33–39, July/August 2003
2003.

[11] D. Moore, C. Shannon, and J. Brown. Code-Red: a Case
Study on the Spread and Victims of an Internet Worm. In
Proceedings of the Second Internet Measurement Workshop,
pages 273–284, November 2002.

[12] D. Moore, C. Shannon, G. M. Voelker, and S. Savage.
Internet Quarantine: Requirements for Containing
Self-Propagating Code, 2003.

[13] D. Nojiri, J. Rowe, and K. Levitt. Cooperative Response
Strategies for Large Scale Attack Mitigation. In Proc.
DARPA DISCEX III Conference, 2003.

[14] C. Shannon and D. Moore. The Spread of the Witty Worm.
To appear in IEEE Security and Privacy, 2004.

[15] S. Sing, C. Estan, G. Varghese, and S. Savage. The EarlyBird
System for Realtime Detection of Unknown Worms: UCSD
Tech Report CS2003-0761.

[16] S. Staniford. Containment of Scanning Worms in Enterprise
Networks. Journal of Computer Security, to appear, 2004.

[17] S. Staniford and C. Kahn. Worm Containment in the Internal
Network. Technical report, Silicon Defense, 2003.

[18] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the
Internet in Your Spare Time. In Proceedings of the 11th
USENIX Security Symposium. USENIX, August 2002.

[19] The Honeynet Project. http://www.honeynet.org/.
[20] J. Twycross and M. M. Williamson. Implementing and

Testing a Virus Throttle. In Proceedings of the 12th USENIX
Security Symposium. USENIX, August 2003.

[21] S. Venkataraman, D. Song, P. Gibbons, and A. Blum. New
Streaming Algorithms for Fast Detection of Superspreaders.

[22] A. Wagner, T. Dubendorfer, B. Plattner, and R. Hiestand.
Experiences with Worm Propagation Simulations. In
Proceedings of the 2003 ACM workshop on Rapid Malcode,
pages 34–41, October 2003.

[23] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham. A
Taxonomy of Computer Worms. In The First ACM Workshop
on Rapid Malcode (WORM), 2003.

[24] N. Weaver, S. Staniford, and V. Paxson. Very Fast
Containment of Scanning Worms. Submitted to Usenix
Security 2004, 2004.

[25] M. M. Williamson. Throttling Viruses: Restricting
Propagation to Defeat Mobile Malicious Code. In ACSAC,
2002.

[26] Y. Zhang, N. Duffield, V. Paxson, and S. Shenker. On the
Constancy of Internet Path Properties. In Proc. ACM
SIGCOMM Internet Measurement Workshop, November
2001.

