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In this work we show that: i) the roughly hierarchical structure of complex networks is congruent with
negatively curved geometries hidden beneath the observed topologies; ii) the most straightforward mapping of
nodes to spaces of negative curvature naturally leads to the emergence of scale-free topologies; and iii) greedy
routing on this embedding is efficient for these topologies, achieving both 100% reachability and optimal path
lengths, even under dynamic network conditions. The critical important question left by this work is whether
the topologies of real networks can be mapped into appropriate hidden hyperbolic metric spaces.

I. INTRODUCTION

Routing information is the most basic and, perhaps, the
most complicated function that networks perform. Conven-
tional wisdom states that to find paths to destinations through
the complex network maze, nodes must communicate and ex-
change information about the status of their connections to
other nodes, since without some knowledge of changing net-
work connectivity, it is not possible to successfully route in-
formation through the network.

In the Internet, this required inter-node communication
makes routing both expensive and fragile. The recent Inter-
net Architecture Board report on routing and addressing [35]
identifies convergence costs of deployed routing protocols as
one of the most serious scaling issues with the existing In-
ternet routing architecture, aggravated by explosive rates of
routing table size growth. Worse yet, a recent review of com-
pact routing [26] shows that the required number of messages
for routing state to converge on small-world networks cannot
scale better than linearly with network size for any routing
algorithm.

In many other real networks however, nodes can efficiently
communicate, even though they do not exchange any infor-
mation about the current global state of the network topology.
In 1969, Stanley Milgram performed the following experi-
ment [53]. He asked some random individuals—sources—to
send a letter to a specific person—the destination, described
by his name, occupation, age, and the city he lived in. The
sources were asked to pass the letter to friends chosen to max-
imize the probability of the letter reaching its destination. Ap-
proximately 30% of the letters reached their destination, even
though nodes in this routing example had no global knowl-
edge of the human acquaintance network topology, except
their local connections and some characteristics (e.g., occu-
pation, age, city of dwelling) of their connections.

Much later, Jon Kleinberg offered the first popular expla-
nation [22] of this surprising effect. In his model, each node,
in addition to being a part of the graph representing the global
network topology, resides in a coordinate space—a grid em-
bedded in the Euclidean plane. The coordinates of a node in
the plane, its address, abstracts the information about the des-
tination in Milgram’s experiments. Each node knows: 1) its

coordinates; 2) the coordinates of its neighbors; and 3) the co-
ordinates of the destination written on the packet. Given these
three pieces of information, the node can route greedily by
selecting the direct neighbor closest to the destination in the
plane.

Clearly, the described greedy routing strategy can be effi-
cient only if the network topology is in some way congru-
ent with the underlying space. Kleinberg indeed finds that
the paths produced by greedy routing are polylogarithmically
short only if the probability that there is a link between a pair
of nodes depends in a very specific way on the distance be-
tween the two nodes in the plane. This finding implies that
greedy routing cannot be equally efficient on any arbitrary
network topology built over a given underlying space. Only
certain topologies, congruent with the underlying space, will
perform well.

Given that the network topology is so critically important,
the Kleinberg model stands closer to the beginning of an ex-
planation for Milgram’s experiment than to its end. The model
does not (try to) reproduce the basic topological properties of
social networks through which letters were traveling in Mil-
gram’s experiments. For instance, the Kleinberg model pro-
duces only k-regular graphs while social networks, the Inter-
net, and many other complex networks [39] are known to be
scale-free, meaning that: i) the distribution P (k) of node de-
grees k in a network follows power laws P (k) ∼ k−γ with
exponent γ lying between 2 and 3 (see Table I); and ii) the
network has strong clustering, i.e., a large number of triangu-
lar subgraphs.

In this work we assume that nodes in the Internet and other
complex networks exist in some spaces that underlie the ob-
served network topologies. We call these spaces hidden metric
spaces. The observed network topology is coupled to the hid-
den space geometry in the following way: a link between two
nodes in the topology exists with a certain probability that de-
pends on the distance between two nodes in the hidden geom-
etry. One possible and plausible explanation for the Kleinberg
model’s inability to naturally produce scale-free topologies is
that the spaces hidden beneath the Internet and other real net-
works are not Euclidean planes. In this work, we attempt to
identify the most basic geometric properties of these hidden
spaces.
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Specifically, the main results in this paper are that if we
model hidden spaces as non-Euclidean hyperbolic spaces, i.e.,
spaces of negative curvature, then this negatively curved ge-
ometry leads to:

1. naturally emerging scale-free topologies constructed
over such hidden spaces; and

2. extremely efficient greedy routing on these
topologies—maximally efficient, in fact, across
all topologies we consider.

We have to emphasize the importance of the first result.
We make no effort whatsoever to enforce either power laws
or clustering in our modeled networks. These two properties
emerge naturally. Therefore, hidden hyperbolic geometries
appear as a new possible explanation of the scale-free struc-
ture of complex networks. To the best of our expertise, this
explanation is not equivalent to the preferential attachment [3]
or any other known mechanisms [39] of power-law emergence
in complex networks.

In this paper however, we focus on the second result. In
more detail, we find that in scale-free networks with small
exponents γ, greedy routing successfully finds paths between
99.99% source-destination pairs, while simple boosting tech-
niques bring this success ratio to 100%. More strikingly, all
successful paths follow shortest paths, resulting in a maxi-
mum stretch of 1. These findings indicate that static scale-
free topologies are extremely congruent with their underlying
hyperbolic geometries in our models.

Real networks are dynamic however, with link and node
failures the common case. We find, most remarkably, that the
efficiency of greedy routing and, especially, of its modifica-
tions is extremely stable even under dynamic conditions. For
example, the success ratio degrades by less than 1% when as
many as 10% of all links in the network fail. Once again, our
simple extensions can boost the success ratio back to 100%.
These findings indicate that scale-free topologies are not only
congruent with hidden hyperbolic geometries, but also that
this congruency is resilient to network dynamics.

In the next section we recall the basic facts on hyperbolic
geometry. They let us outline, in Section III, the main moti-
vations that led us to our hyperbolic hidden space conjecture.
We describe some details of our models of networks on hy-
perbolic spaces in Section IV. Leaving all the analytic deriva-
tions concerning our models for future publication, we move
directly to Section V where we report our simulation results
confirming our analytic predictions and focusing primarily on
the efficiency characteristics of greedy routing and its modifi-
cations in modeled networks. After a review of related work
in Section VI, we conclude, in Section VII, with an outline of
the main results, their applicability, and directions for future
work.

II. HYPERBOLIC SPACES

In this section we review the basic facts about hyperbolic
geometry. More detailed accounts can be found in various
(text)books [2, 8, 9, 19].

TABLE I: Values of power-law exponent γ observed in some com-
plex networks. The values for the AS Internet and PGP trust network
come from [14, 45] and [5]. All other values are from [39]. In many
networks, γ is close to 2.

Network γ

AS Internet 2.1

WWW 2.1

P2P 2.1

PGP trust relationships 2.5

Film actor collaboration 2.3

Metabolic reactions 2.2

Protein interactions 2.4

In two dimensions, there are only three types of isotropic1

spaces: Euclidean (flat), spherical (positively curved), and hy-
perbolic (negatively curved). Most readers are familiar with
the first two. Hyperbolic spaces of constant negative curva-
ture are more difficult to envisage because they cannot be iso-
metrically2 embedded in any Euclidean spaces. The reason
is, informally, that the former are “larger,” have more “space”
than the latter.

One can measure the curvature of a surface at a given point
by the deviation of the lengths of circles centered at the point
from their Euclidean values. Formally, the curvature of a sur-
face at a given point can be defined as

K =
3
π

lim
R→0

2πR− l(R)
R3

, (1)

where l(R) is the length of the circle of radius R lying on the
surface and centered at this point. If there is no deviation from
2πR, then the surface is flat; if circles are shorter or longer
than in the Euclidean case, then the surface is positively or
negatively curved. A classic example of hyperbolic surfaces is
the one-sheeted hyperboloid, obtained by rotating a hyperbola
around one of its symmetry axis. The hyperboloid curvature
is not constant: it is −1 at its narrowest part, but approaches 0
at infinity. Note for comparison that at any point on a sphere
of radius 1, the curvature is 1.

Because of the fundamental difficulties in representing
spaces of constant negative curvature as subsets of Euclidean
spaces, there are not one but many models for the hyperbolic
plane, that is the 2-dimensional hyperbolic space of constant
curvature−1. Each model emphasizes different aspects of hy-
perbolic geometry, but no model simultaneously represents all
its properties. For illustration purposes, we consider just one
model—the Poincaré disc model. It is conformal, meaning
that Euclidean angles between hyperbolic lines in the model
are equal to their hyperbolic values, but it does not preserve
distances or areas.

1 The space is isotropic if it “looks the same” at every point and in every
direction.

2 An isometric embedding preserves distances.
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(a)Lines and triangles (b)Tessellation (c)Hyperbolic art

FIG. 1: Poincaré disc model. Fig. (a) shows examples of hyperbolic lines (L1,2,3, P1,2,3). Lines L1,2,3 intersect to form triangle ABC. The
sum of its angles a + b + c < π. There are infinitely many lines (examples are P1,2,3) that are parallel to line L1 and go through a point C
that does not belong to L1. Fig. (b) shows a tessellation of the hyperbolic plane by equilateral triangles, and the dual tessellation by regular
heptagons. All triangles and heptagons are of the same hyperbolic size but the size of their Euclidean representations exponentially decreases
as a function of the distance from the center, while their number exponentially increases. Fig. (c) is a tessellation-inspired artistic visualization
of the hyperbolic plane by Silvio Levy, based on M. C. Escher’s Circle Limit III. Printed with the permission from the Geometry Center,
University of Minnesota.

In the model, the whole infinite hyperbolic plane is repre-
sented by the interior of the Euclidean disc of radius 1, see
Fig. 1. The boundary of the disc is not a part of the hyper-
bolic plane, but represents its infinitely remote points. Hy-
perbolically straight, infinite lines, i.e., geodesics, are disc di-
ameters and Euclidean arcs orthogonal to its boundary. Eu-
clidean and hyperbolic distances, re and rh, from the disc
center, or the origin of the hyperbolic plane, are related by
re = tanh(rh/2). Euclidean distances in the radial direction
thus correspond to exponentially longer hyperbolic distances
as we move closer to the disc boundary. For example, the hy-
perbolic lengths of radial intervals of Euclidean length 0.01
located at Euclidean distances 0.0, 0.5, and 0.9 from the cen-
ter are 0.02, 0.03, and 0.70:

Hyperbolic:

Euclidean: 0.01 0.01 0.01

0.02 0.03 0.70

0.00

0.00 0.02

0.01 0.50 0.91

1.10 1.13

0.90

2.94 3.10

0.51 1.00

8

More generally, by definition of the negative curvature, hy-
perbolic spaces expand faster than Euclidean spaces. Specif-
ically, while Euclidean spaces expand polynomially, hyper-
bolic spaces expand exponentially, as illustrated in Fig. 1. In
the hyperbolic plane, for example, the length of the circle and
the area of the disc of hyperbolic radius R are

l(R) = 2π sinhR, (2)
s(R) = 2π(coshR− 1). (3)

In the Poincaré disc model, these relations imply that Eu-
clidean distances in the tangential direction also correspond to
exponentially longer hyperbolic distances as we move closer
to the disc boundary. For example, the hyperbolic lengths of
tangential intervals of Euclidean length 0.01 located at Eu-
clidean distances 0.0, 0.5, and 0.9 from the center are 0.02,
0.03, and 0.10:

Hyperbolic:

Euclidean: 0.01 0.01 0.01

0.02 0.03 0.10

0.00

0.00

0.50

1.10

0.90

2.94

1.00

8

0.01

8

Note that substituting Eq. (2) in Eq. (1) yields curvature
K = −1 at every point of the hyperbolic plane. Eqs. (2,3)
mean that both circle lengths and disc areas grow as eR with
radius R.

Some find these properties of hyperbolic space bizarre.
However, certain more familiar objects, including trees, dis-
play these properties. In a b-ary tree (a tree with branching
factor b), the analogies of the circle length or disc area are
the number of nodes at distance exactly R or not more than
R hops from the root. These numbers are (b + 1)bR−1 and
((b + 1)bR − 2)/(b − 1), both growing as bR with R. We
thus see that the metric structures of the hyperbolic plane and
trees are extremely similar: in the former case circle lengths
and disc areas grow as eR, while in the latter—as bR. In
other words, from the purely metric perspective, the hyper-
bolic plane is equivalent to a tree with average branching fac-
tor e. Informally, trees can therefore be thought of as “dis-
creet hyperbolic spaces.” Formally, trees, even infinite ones,
allow isometric embeddings into the hyperbolic plane. For
example, any tessellation of the hyperbolic plane (see Fig. 1)
naturally defines isometric embeddings for a class of trees
formed by certain subsets of polygon sides. Numerous soft-
ware packages for visualization of massive tree-like graphs
utilize the fact that trees embed isometrically into hyperbolic
spaces. Note that in general, trees do not isometrically embed
into Euclidean spaces. Informally, trees need an exponential
amount of space for branching, and only hyperbolic geometry
has it.

Table II collects these and other characteristic properties of
hyperbolic geometry and juxtaposes them against the corre-
sponding properties of Euclidean and spherical geometries.
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TABLE II: Characteristic properties of Euclidean, spherical, and hy-
perbolic geometries. Parallel lines is the number of lines that are
parallel to a line and that go through a point not belonging to this
line.

Property Euclid. Spherical Hyperbolic
Curvature 0 1 −1

Parallel lines 1 0 ∞
Triangles are normal thick thin
Shape of trian-
gles

Sum of angles π > π < π

Circle length 2πR 2π sinR 2π sinhR

Disc area 2πR2/22π(1− cosR) 2π(coshR−1)

III. MOTIVATION

If not all properties of hyperbolic spaces are necessarily
easy to comprehend, then why suggest them as models for
hidden metric spaces underlying the real Internet and other
networks? There are at least two reasons, discussed below.

A. Node taxonomies imply negative curvature of hidden spaces

Complex networks connect distinguishable, heterogenous
elements abstracted as nodes. Understood broadly, this het-
erogeneity implies that there is at least some taxonomy of el-
ements, meaning that all nodes can be somehow classified.
In most general settings, this classification implies that nodes
can be split in large groups consisting of smaller subgroups,
which in turn consist of even smaller subsubgroups, etc. The
relationships between such groups and subgroups can thus be
approximated by tree-like structures, sometimes called den-
drograms [12], that represent hidden hierarchies in networks.
But as discussed in Section II, the geometries of trees and hy-
perbolic spaces are intimately related, and they both are neg-
atively curved. We emphasize that we do not assume that the
node classification hierarchy among a particular dimension is
strictly a tree, but that it is approximately a tree. As soon as it
is at least approximately a tree, it is negatively curved [19].

The above discussion obviously applies only to a snapshot
of a network taken at some moment of time. A logical ques-
tion is how these taxonomies emerge. Clearly, when the first
node of a future network appears, the node classification is
degenerate, but as more and more nodes join the network and
evolve in it, they necessarily diversify and specialize, thus
deepening their classification hierarchy.

With these observations, the distance between nodes in
those underlying tree-like geometries is a rough approxima-
tion of how similar two nodes are [27]. The more similar a
pair of nodes, the more likely they are connected.

We consider several examples suggesting that these gen-
eral considerations are applicable to different real networks.
Social networks form the most straightforward class of ex-
amples, where network community structures [5, 17] repre-

sent hidden hierarchies [54]. More concretely, in paper ci-
tation networks—nodes are scientific papers and links are
references—the underlying geometries can approximately be
the relationships between scientific subject categories, and the
closer the subjects of two papers, the more likely they cite
each other [6, 44]. Conceptually similar subject-based classi-
fication of web pages (or more specifically, of the Wikipedia
pages [37]) also shows the same effect: the closer the subjects
of a pair of web pages, the more likely there is a hyperlink be-
tween them [34]. In biology, the distance between two species
on the phylogenetic tree is a widely used measure of similarity
between the species [38]. Note that this example emphasizes
both the existing taxonomy of elements and their evolution.

Finally, the evolution of the Internet can be also mapped to
this general framework. In the beginning, there were only two
IMPs, then ARPANET that grew and inspired MFENet, HEP-
Net, CSNET, USENET, BITNET, etc., and finally NSFNET
whose decommission eventually led to the appearance of a
collection of interconnected ASs, and their growth in number
and diversity [28]. Currently, ASs can be classified based on
their geographic position and coverage, size, number and type
of customers, business role, and many other factors [15].

B. Power laws as a consequence of exponential expansion of
hidden space

We have seen in Section II that hyperbolic spaces expand
exponentially. In particular, if nodes are distributed approxi-
mately uniformly in a hidden hyperbolic space, then the num-
ber of nodes n(r) at distance r from any reference point, e.g.,
an abstraction of the root or origin of hidden hierarchies de-
scribed in Section III A, grows exponentially with r,3

n(r) ∼ eαr, α > 0, (4)

with α = 1 for the hyperbolic plane.
At the same time, the average degree k(r) of nodes located

at distance r from the hierarchy origin should decrease with r.
Indeed, nodes farther from the origin are, on average, newer
(as discussed in Section III A), and therefore have had less
time to establish connections to other nodes, whatever the spe-
cific mechanisms of the network evolution.

Using this kind of high-level consideration, we can spec-
ulate that k(r) decreases exponentially with increasing r.
Indeed, we can always define any characteristic hyperbolic
shape span by a node’s connections, e.g., the minimum-size
hyperbolic disc containing x% of its neighbors in the network.
Independent of the connection shape for nodes at distance r
from the origin, the average area S(r) of the intersection of
their connection shapes with the minimum-sized disc centered
at the origin and containing all nodes in the network decreases
exponentially with r, which is an obvious consequence of the

3 In this paper, symbols ‘∼’ and ‘≈’ mean, respectively, proportional to and
approximately equal.
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exponential dependence of hyperbolic area on its characteris-
tic size, cf. Section II. Since by definition k(r) is proportional
to S(r), the former also decreases exponentially:

k(r) ∼ e−βr, r(k) ∼ − 1
β

ln k, β > 0. (5)

The combination of exponentials [40] in Eqs. (4,5) yields
the power-law node degree distribution: the number of nodes
n(k) of degree k is given by:

n(k) ≈ n[r(k)]|r′(k)| ∼ k−γ (6)

with the power-law exponent:

γ = 1 +
α

β
. (7)

This way, the power laws ubiquitously observed in com-
plex networks, including the Internet, emerge as a simple and
natural consequence of the exponential expansion of space in
hidden hyperbolic geometries.

IV. MODELS OF NETWORKS EMBEDDED IN
HYPERBOLIC SPACES

In this section we develop network models with nodes re-
siding in hyperbolic spaces.

Given our main premise that Internet nodes (ASs or routers)
and nodes of other real networks exist in hidden spaces of neg-
ative curvature, we would ultimately like to specify exactly
what these spaces are for each given real network. Further,
each node should be able to compute its hidden coordinates
based solely on the information accessible to it locally. For
example, each AS has access to the information on the iden-
tity of its customers, providers, and peers. It also knows the
details of its peering agreements, its business role in the In-
ternet economy, the size of IP address space allocated to it,
its geographic spread, i.e., the number, size, and geographic
location of PoPs it is present at, etc. We thus see that there
are numerous, non-unique ways to combine (some function
of) these and other pieces of locally-known information into
an ultimate formula that would compute the AS’s coordinates
in the underlying space, which is yet unknown to us.

We leave the difficult problem of reconstructing the exact
structure of hidden spaces underlying the Internet and other
networks for future work. In this paper, we consider the sim-
plest hyperbolic space possible, a hyperbolic plane, and see if
we can construct simple network models where nodes mapped
to this space naturally reproduce the main topological charac-
teristics of the Internet and other real networks. Specifically,
according to [32], reproducing the Internet’s power-law node
degree distributions, correlations, and clustering, one can cap-
ture many other metrics as well. As a bare minimum, we want
to construct network models with nodes lying in a hyperbolic
space and with power-law node degree distributions arising
naturally, e.g., without our designing them into the modeled
networks.

We achieve this task using the hidden variable approach
described in [4]. This approach works as follows: given a net-
work size N , each node i is first assigned a hidden variable
hi drawn from some probability distribution, and then a link
between each pair of nodes (i, j) is created with a connec-
tion probability p(hi, hj), which is a function of the hidden
variable values at the two nodes. In our models, hidden vari-
ables are node coordinates in a hidden hyperbolic space and
the connection probability depends on the hyperbolic distance
between them. We can thus fully describe each network model
by specifying: 1) the hyperbolic space; 2) the distribution of
nodes in it, i.e., the node density; and 3) the connection proba-
bility as a function of the hyperbolic distance between nodes.

The simplest hyperbolic space is the hyperbolic plane dis-
cussed in Section II. The simplest way to place N nodes on
the hyperbolic plane is to distribute them uniformly over a
disc of radius R. Since the disc area is given by Eq. (3), we
have N ∼ eR. In view of the analogy between hyperbolic
spaces and trees discussed in Section II, the radius R of the
disc is an abstraction of the depth of the hidden network hi-
erarchy due to node taxonomies. When the network is small
this hierarchy is shallow, and as the network grows, its hidden
node hierarchy deepens, as discussed in Section III A. In our
model, the relationship between the disc radius and network
size, R ∼ lnN , is qualitatively the same as the relationship
between the depth of a balanced tree and its size.

We have thus far selected the simplest hyperbolic space and
the simplest node distribution. We have next to select the
simplest node connection probability function. To do so, we
observe that the disc is a compact set, and R is its charac-
teristic scale. A natural candidate for the simplest connec-
tion probability function is then a function proportional to
the maximum-entropy distribution with the compact support
[0, R], which is again the uniform distribution on this interval.
The simplest such function is the step function on [0, R]. In
other words, we connect each pair of nodes by a link if the
hyperbolic distance between them is x 6 R. It turns out that
the described model produces graphs with the power-law dis-
tribution P (k) ≈ n(k)/N of node degrees k:

P (k) ∼ k−3. (8)

Note that we have done nothing to enforce this power law.
It appears as a simple consequence of the negative curvature
of the underlying space. To understand why, recall (Sec-
tion III B) that a uniform spatial node distribution in hyper-
bolic spaces implies that the node density grows exponentially
as a function of the distance from a point. Specifically, if this
point is the center of our disc, then the normalized node den-
sity ρ(r), where r ∈ [0, R] is the distance from the disc center,
is:

ρ(r) =
sinh(r)

coshR− 1
≈ er−R ∼ er, (9)

i.e., the number of nodes n(r) = Nρ(r) at distance r from
the disc center is proportional to er. In the Euclidean case, the
number of nodes is proportional to r.

It is then a matter of simple (but lengthy) analytic calcu-
lations to find the average degree k(r) of nodes located at
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distance r from the disc center. The result is that the step-
function connection probability yields:

k(r) ∼ e− 1
2 r, (10)

i.e., the average node degree decreases exponentially with the
distance from the disc center. In fact, we can calculate the
exact analytic expression for k(r). This expression is rather
long. We omit it for brevity, but show in Fig. 2 that it perfectly
matches simulations. Taken together, Eqs. (9,10,7) yield that

0 5 10 15
10

0

10
1

10
2

10
3

10
4

r

k(r)

Simulation
Theory

FIG. 2: Average degree at distance r from the origin.

graphs constructed by this model have a power-law node de-
gree distribution with exponent γ = 1 +α/β = 1 + 1/

(
1
2

)
=

3.
We can easily alter the described model. For example, we

can distribute nodes non-uniformly on the disc. The most nat-
ural generalization of node density in Eq. (9) appears to be:

ρ(r) ≈ αeα(r−R) ∼ eαr, (11)

with α = 1 corresponding to the hyperbolically uniform node
distribution. It turns out—we omit these calculations—that
the average node degree k(r) decreases as:

k(r) ∼

{
e−

1
2 r if α > 1

2 ,

e−αr if α 6 1
2 ,

(12)

and, consequently, the node degree distribution P (k) is a
power law. Specifically, one can show—we omit these cal-
culations as well—that the degree distribution is:

P (k) = 2αξ2αΓ (k − 2α, ξ) , (13)

where ξ = k̄(2α − 1)/(2α), k̄ =
∑
k kP (k) is the average

degree, and Γ is the incomplete gamma function. For large k,
Eq. (13) scales as:

P (k) ∼ k−γ (14)

with:

γ =

{
2α+ 1 if α > 1

2 ,

2 if α 6 1
2 .

(15)

We thus see that by changing α, which according to our tree
analogy regulates the average branching factor of the hidden
tree-like hierarchy, we can construct power-law graphs with
any exponent γ > 2, as observed in a majority of known com-
plex networks.

V. ROUTING ON THE MODELED NETWORKS

In this section we first briefly describe the properties of net-
works generated by our model, and then focus on the effi-
ciency characteristics of greedy routing and its modifications
in these networks.

A. Modeled networks

In all our simulations, unless mentioned otherwise, we fix
the target number of nodes in the network to N = 104 and
its average degree to k̄ = 6.5, which is roughly the same as
in Internet’s AS topology. Given a target number of nodes N
and average degree k̄, we generate our networks as follows:
• Fix the radius R of the hyperbolic disc according to N =
κeR/2, where parameter κ is used to tune the average degree
to target k̄. This relationship between N and R ensures that
the network remains sparse in the large-graph limit N →∞.
• Assign to each node an angular coordinate θ ∈ [0, 2π) dis-
tributed uniformly.
• Assign to each node a radial coordinate r ∈ [0, R] with
probability ρ(r) = αeαr(eαR − 1)−1, α ∈ [1/2, 1].
• Connect every pair of nodes whenever the hyperbolic dis-
tance between them is smaller than R. The hyperbolic dis-
tance x between two nodes with coordinates (r, θ) and (r′, θ′)
is given by the hyperbolic law of cosines

coshx = cosh r cosh r′ − sinh r sinh r′ cos ∆θ (16)

where ∆θ = min (|θ − θ′|, 2π − |θ − θ′|).
In Fig. 3(a), we visualize one network instance of small

size. We notice that hyperbolic geometry prevents peripheral
nodes from connecting to each other, even if the Euclidean
distance between them is small. This effect is due to the vi-
sualization settings in this figure. We set Euclidean radial dis-
tances to hyperbolic ones, but hyperbolic distances in the tan-
gential direction grow exponentially with the distance from
the disc center. Therefore a Euclidean distance in the tan-
gential direction corresponds to a longer hyperbolic distance
than the same Euclidean distance in the radial direction. The
farther from the disc center, the exponentially stronger this
disproportion. This explains why most links appear radially
oriented.

In Fig. 4, we show the degree distribution, correlations, and
clustering, i.e., the dK-properties [32] in our modeled net-
works. We observe agreement between simulation results and
the analytical prediction for the degree distribution in Eq. (13).

We see that all our networks possess strong clustering.
Strong clustering, or large numbers of triangles in generated
networks, is a simple consequence of the triangle inequality in
the hyperbolic plane. Indeed, if node a is close to node b in the
plane, and b is close to a third node c, then a is also close to
c because of the triangle inequality. Since all three nodes are
close to each other, links between all of them forming triangle
abc exist in our model. We also observe that the smaller the γ,
the stronger the clustering of high-degree nodes, which means
that in networks with low γ’s, high-degree hubs participate in
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(a)Graph instance (b)Successful paths (c)Unsuccessful paths

FIG. 3: Visualization of a modeled network and greedy routing on it. Fig. (a) shows a modeled network with N = 740 nodes and γ = 2.2
embedded in the hyperbolic plane. For visualization purposes, the hyperbolic plane is not represented as in the Poincaré disc model. Instead,
the Euclidean distances between all nodes and the disc center are their hyperbolic distances from the origin. Fig. (b) and (c) show all the links
span by the successful and unsuccessful paths from the top node to all other nodes. For all the seven unsuccessful destinations, the last hop on
the unsuccessful paths to them, i.e., the local minimum marked by the cross, is the same. The dashed lines in Fig. (c) show the unsuccessful
destinations by connecting them to their local minimum.
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FIG. 4: The dK-properties [32] of simulated networks. From top to
bottom: degree distribution P (k), degree correlation as the average
degree k̄nn(k) of neighbors of k-degree nodes, and average cluster-
ing c̄(k) of k-degree nodes. The degree distribution for γ = 2.5 is
not shown for clarity. Solid lines are the theoretical prediction given
by Eq. (13).

more triangles than in networks with large γ’s. This fact turns
out to have important consequences for the performance of
greedy routing in Section V B.

In Fig. 5, we compare the Internet AS topology and our net-
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FIG. 5: Simulated networks with γ = 2.1 vs. AS topologies from
RouteViews BGP tables [45] and DIMES traceroute data [14].

works with γ = 2.1 (see Table I). We use two different sources
of Internet topology data: BGP tables from RouteViews [45]
and traceroute data from the DIMES project [14]. The degree
distribution in our networks is remarkably close to the empir-
ical AS degree distribution, as expected. Although our net-
works do not show the same degree correlations as in the In-
ternet for small degrees k, the slope of the average neighbor’s
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degree function k̄nn(k) for large k is the same. Surprisingly,
the shape of the clustering curve c̄(k) for our networks is sim-
ilar to the Internet’s. We currently do not have any satisfactory
explanation for these coincidences between our toy model and
the real Internet. We see that although the clustering shape is
the same, the absolute values of clustering in our model are
larger than in the Internet. Note that the DIMES clustering
at small degrees is larger than BGP’s because DIMES finds
more “missing” links between small-degree ASs. It is there-
fore quite plausible that the clustering in the real Internet—
once all the “missing” links are added—is even stronger and
thus closer to what our model produces.

B. Greedy routing

We now evaluate the performance of greedy routing on our
modeled networks. A node’s address is its hyperbolic coor-
dinates, and each node knows only its own address, the ad-
dresses of its neighbors, and the destination address written in
the packet.

Below we report simulation results for two forms of greedy
routing, original and modified. In both algorithms, a current
hop selects as the next hop the neighbor that is closest to the
destination in the hyperbolic space. The subtle difference be-
tween the two is in the failure detection mechanism. The orig-
inal algorithm drops the packet if the current hop is a local
minimum, meaning that it does not have any neighbor closer
to the destination than itself. The modified algorithm does not
always do so. The current hop excludes itself from any dis-
tance comparison operations, and finds the neighbor closest
to the destination. The packet is dropped only if this neighbor
is the same as the previous hop from which the current hop
receives the packet.

We have also experimented with a variety of other greedy
routing modifications, most notably with geodesic routing,
which selects, among all the downstream neighbors of the cur-
rent hop, the one which is closest to the hyperbolic geodesic
connecting the source and destination. All these modifica-
tions deliver quite similar results, with only subtle differences
across all the metrics we consider. Some algorithms perform
slightly better w.r.t. some metrics but slightly worse w.r.t. oth-
ers.

We compute the following metrics: (i) the percentage of
successful paths, ps, which is the proportion of paths that
reach their destinations; (ii) the average hop-length h̄ of suc-
cessful paths; and (iii) the average and maximum stretch of
successful paths.

Since we have not only graphs, but also hyperbolic spaces
underneath, we compute not one, but three types of stretch.
The first stretch is the standard hop stretch defined as the ratio
between the hop-lengths of greedy routing paths and the cor-
responding shortest paths in the graph. We denote its average
and maximum by s1 and max(s1). The other two stretches
are hyperbolic. They measure the deviation of the hyperbolic
length, traveled by a packet along either the greedy or short-
est path, from the hyperbolic distance between the source and
destination. Formally, let (s, t) be a source-destination pair

and let s = h0, h1, ..., hτ = t be the greedy or shortest path
between s and t, and τ its hop length. Further, let di, i = 1...τ ,
be the hyperbolic distance between hi and hi−1. The hyper-
bolic stretch is the ratio

∑
i di/dst, where dst is the hyper-

bolic distance between s and t. For greedy routing paths, we
denote the average and maximum of this stretch by s2 and
max(s2); for shortest paths—by s3 and max(s3). The lower
these two stretches, the closer the greedy and shortest paths
stay to the hyperbolic geodesics, and the more congruent the
network topology is with the underlying geometry.

We first focus on static networks, where the network topol-
ogy does not change, and then move to dynamic networks,
where we emulate link failures by randomly selecting and re-
moving one or more links from the topology. For each gener-
ated network instance, we extract the giant connected compo-
nent (GCC), and perform greedy routing between 104 random
source-destination pairs belonging to the GCC. In Fig. 3(b,c)
we visualize the greedy routing performance in a small net-
work instance.

1. Static networks

Fig. 6(i) shows the success ratio (ps) of our greedy rout-
ing in networks with different γ’s, while Fig. 6(ii) shows the
corresponding average number of hops (h̄) for the successful
paths. For each value of γ, we average the results over 5 differ-
ent network instances. First, we observe that ps decreases as γ
increases, and that modified greedy routing performs slightly
better than the original one for all values of γ. Second, we
can see that smaller values of γ, e.g., γ 6 2.4, observed in
many complex networks including the Internet, maximize the
efficiency of greedy routing, yielding remarkably high success
ratios close to 1. For example, when γ = 2.1, i.e., equal to
γ observed in the AS Internet, original greedy routing yields
ps = 0.99920 and the modified one gives ps = 0.99986. Fur-
ther, we observe an increasing trend in h̄ as we increase γ,
with the two greedy routing algorithms performing approxi-
mately the same.

Fig. 7 shows the stretch results. For each value of γ,
the maximum stretch corresponds to the maximum observed
value across the 5 different network instances, while the av-
erage stretch is taken as the average across these instances.
We observe that the average hop stretch s1 for both greedy
routing algorithms is approximately 1 for all values of γ, im-
plying that all paths are approximately optimal. While the
difference between the two algorithms is not notable in terms
of s1, we can observe some differences in terms of max(s1).
We see that original greedy routing never performs worse than
the modified one, which is expected because the original al-
gorithm never sends the packet to a next hop that is hyperbol-
ically farther from the destination than the current hop, while
the modified algorithm sometimes does so to increase the suc-
cess ratio.

Remarkably, the original algorithm yields both s1 = 1 and
max(s1) = 1 for γ 6 2.2, which means that all greedy rout-
ing paths are shortest paths. The modified algorithm for the
same range of γ, gives s1 ≈ 1 and max(s1) 6 1.25. There-
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FIG. 6: (i) Percentage ps of successful greedy routing paths, and (ii) their average hop-length h̄. (Static networks.)
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fore, while the modified algorithm performs slightly better in
terms of the success ratio than the original one, it performs
slightly worse in terms of stretch.

Interestingly, we see that for each algorithm, the hyperbolic
stretch of shortest paths (s3 and max(s3)) is slightly worse
(larger) than of greedy paths (s2 and max(s2)). In that sense,
we can say, informally, that for small γ’s, greedy routing paths
are “shorter than shortest” as for small γ they are shortest
hop-wise and shorter hyperbolically. This effect is expected
because shortest path computation algorithms (e.g., Dijkstra)
do not care about hyperbolic distances, while greedy routing
does. At the same time, the differences between s2 and s3, and
between max(s2) and max(s3) are minimal, which is also
expected because the hop stretch s1 and max(s1) is so low.
Finally, we see that the increase of stretches s2 and s3 with
γ is similar to the one of the path hop length h̄ in Fig. 6(ii),
as also expected since longer paths are more likely to travel
away from the the hyperbolic geodesic.

Summarizing, both greedy routing algorithms are ex-
tremely efficient in static networks, especially for the smaller
values of γ observed in a vast majority of complex networks,
including the Internet. The algorithms yield high success ra-
tios close to 1 and optimal (or almost optimal) path lengths.

2. Dynamic networks

We now evaluate the greedy routing performance in dy-
namic scenarios with link failures. For each value of γ, we
randomly select a network instance from the ones considered
earlier. For this particular instance, we consider the same
source-destination pairs as before, and emulate failures by
randomly selecting and removing one or more links from the
topology. We consider the following two link-failure scenar-
ios:
Scenario 1. In this scenario we study the degradation of the
success ratio and stretch under removal of a percentage pr
of randomly selected links from the topology. After link re-
moval, we compute the new GCC, and then, for all of the
source-destination pairs that belong to the new GCC we com-
pute the new success ratio pnews , and the new average and
maximum stretch of the successful paths, denoted by snew1

and max(snew1 ) respectively. We vary pr from 0% to 30%.
Scenario 2. In this scenario we provide a finer-grain view fo-
cusing on the paths that used a removed link. Specifically,
we select one link at random, remove it from the topology,
and compute the new GCC. Then, for all previously success-
ful paths traversing this link, we compute the percentage of
paths that remain successful, denoted by pls. For these paths,
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we also compute the average and maximum stretch as before,
which we now denote by sl1 and max(sl1) respectively. We
repeat this procedure over 1000 different links, and report the
average pls and the average sl1, and the maximum observed
value of max(sl1).

Fig. 8 presents results for Scenario 1. For smaller values
of γ, the success ratio pnews remains remarkably high, for
all meaningful values of pr. For example, modified greedy
routing on networks with γ = 2.1 and pr 6 0.1, yields
pnews > 0.99. In fact, this remains true for all networks with
γ 6 2.5, not shown in the figure for clarity. Note that pr = 0.1
corresponds to removal of 10% of all links in the network. For
comparison, the simultaneous failure of 10% links in the In-
ternet is a rare catastrophe. Fig. 8(i) also shows that modified
greedy routing outperforms the original algorithm. We also
observe that smaller values of γ yield a higher success ratio.
Fig. 8(ii) shows that the average routing stretch slightly in-
creases as we increase pr, for all values of γ. However, it still
remains quite low. Also for clarity, we do not show results for
maximum stretch in the figure. We report that for any of the
two algorithms and for any value of pr, max(snew1 ) 6 2 for
γ = 2.1, and max(snew1 ) 6 2.5 for γ = 2.6, 2.8.

Fig. 9 presents results for Scenario 2. For the modified al-
gorithm, the percentage pls of paths that used a removed link
and that found a by-pass after its removal is approximately
equal to 1 for small γ’s. This percentage decays slowly as
γ increases. We also see in Fig. 9(i) that for all values of γ,
modified greedy routing outperforms original greedy routing
in terms of the success ratio pls. In Fig. 9(ii) we see that the
average routing stretch for both algorithms remains low, be-
low 1.1, and the maximum routing stretch never exceeds 1.5.
However, comparing Fig. 9(ii) with Fig. 7(i) and 7(ii), we de-
tect a slight increase in stretch, as expected.

Summarizing, greedy routing strategies (e.g., our modified
greedy routing algorithm) can be quite efficient and robust in
dynamic network conditions. In particular, for the range of
γ’s we are mostly interested in, they maintain remarkably high
success ratios and low stretch.

3. Random and exponential networks

We provide further evidence that the efficiency of greedy
routing on scale-free network topologies is due to their con-
gruency with the underlying hyperbolic geometries. We con-
sider other network topologies, also embedded in a hyperbolic
space, and find that their success ratio is significantly worse.

Specifically, we place nodes on the hyperbolic plane as be-
fore, and construct two types of networks: (i) classical random
graphs [16], where links exist between any two nodes with a
constant probability p, independent of the hyperbolic distance
between them; and (ii) exponential graphs, in which links ex-
ist between any two nodes with probability e−x, where x is
the hyperbolic distance between the two nodes. It is known
that the node degree distribution is binomial in the first case,
and we can show (but skip for brevity) that this distribution is
exponential in the second case. For random networks, the av-
erage success ratio is ps = 0.00254, which is remarkably low.

For exponential networks, ps = 0.68, still significantly lower
than the success ratios on scale-free topologies. These results
underscore that topologies of other, non-scale-free networks
are not naturally congruent with hyperbolic geometry.

C. Closer look at success ratio

Although the success ratios in scale-free networks with
small γ’s are extremely close to 1 (and we have encountered
graph instances where it is 1), it is not exactly 1 on average—
and it could not be, thanks to randomness of graph construc-
tion in our models. We believe that if the hyperbolic space
underlying the real Internet is reconstructed exactly, then the
success ratio will be 1. This belief is supported, in part, by the
fact that any graph can be embedded in the hyperbolic plane
such that the success ratio is 1 [24]. However, since the real
hyperbolic space hidden beneath the Internet may not be re-
constructed exactly but only approximately, and since there
may be different applications of our work in this paper (see
Section VII), we discuss some techniques that can boost the
success ratio to 1, and report basic statistics relevant for the
performance of these techniques on our modeled networks.
These statistics also shed some light on the nature of the un-
successful paths in our networks.

The first obvious boosting technique is to forward a packet
to a landmark if the source cannot reach the destination using
greedy routing. Here a landmark is a node that the source can
reach and that can reach the destination. The relevant statis-
tics for this technique include: (i) the percentage of sources
that can reach all destinations pall−dstssrc , (ii) the percentage
of destinations that all sources can reach pall−srcsdst , and (iii)
the percentage of nodes that can reach all other nodes and be
reached by all other nodes pall, i.e., the intersection of the pre-
vious two sets. We compute all these statistics by performing
greedy routing between all possible source-destination pairs
in our modeled networks with N = 103 nodes and average
degree k̄ = 6.5. We average results across 5 different network
instances, and report them in Table III and IV. We see that
for small γ’s, there are a significant number of nodes that can
serve as landmarks. We also observe a common trend that all
the statistics degrade as γ increases.

γ ps pall−dsts
src pall−srcs

dst pall

2.1 0.99943 0.59892 0.99576 0.59651

2.4 0.98613 0.19979 0.39829 0.19937

2.7 0.96141 0 0.00480 0

3.0 0.82119 0 0 0

Exponential 0.52799 0 0 0

Random 0.01575 0 0 0

TABLE III: Reachability of original greedy routing.

The second boosting technique is applicable to cases where
we can slightly alter the network topology by adding a small
number of links (or virtual links, e.g., tunnels) to boost the
success ratio to 1. We have designed a straightforward greedy
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γ ps pall−dsts
src pall−srcs

dst pall

2.1 0.99967 0.79948 0.99890 0.79923

2.4 0.99193 0.39850 0.78759 0.39849

2.7 0.97828 0.04084 0.39689 0.04084

3.0 0.85932 0 0.00250 0

Exponential 0.72622 0 0 0

Random 0.02328 0 0 0

TABLE IV: Reachability of modified greedy routing.

algorithm to compute the approximately minimum number of
links to be added to a graph to boost its success ratio to 1.
We omit this algorithm specification for brevity, and report
its results in Fig. 10. We see that our networks are just a
small number of links away from being 100%-successful. For
instance, fewer than 10 links are required to make all paths
successful for γ 6 2.4. We also detect a strong correlation
between the number of added links and the number of local
minima that existed in the network before any link addition.
Interestingly, we require fewer links than the number of local
minima, as adding one link can sometimes eliminate several
local minima. We also computed the number of added links
in exponential and random graphs of the same size and aver-

age degree. In exponential graphs with original and modified
greedy routing we need to add 645 and 694 links. For ran-
dom graphs, these numbers are respectively 1604 and 3466.
These results once again confirm incongruity between hyper-
bolic space and these other topologies.
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FIG. 10: Number of local minima and links to add to boost the suc-
cess ratio to 1.

There are also other boosting techniques that try to avoid
or escape from local minima. These techniques are based on
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various forms of path backtracking, lookahead, simulated an-
nealing, etc. Their analysis is more complicated, and we omit
them for brevity.

VI. RELATED WORK

The literature dealing with the design of new scalable rout-
ing for the Internet is abundant. Some recent papers in this
area include [10, 11, 20, 36, 50]. There has also been recent
interest in a variety of compact routing (CR) [1, 7, 52] to ad-
dress scalability concerns for Internet routing. CR currently
promises the best scaling among known routing alternatives.
No CR algorithm can guarantee, however, convergence cost
scaling better than linear with network size [26]. Assuming an
appropriate mapping function between scale-free topologies
with small γ’s and a hyperbolic metric space, the approach
outlined in this paper achieves:

• zero convergence costs (obviously) vs. linear in CR;

• constant address size (node coordinates in hyperbolic
spaces) vs. polylogarithmic in CR;

• maximum stretch equal to 1 (all paths are shortest) with
minor stretch degradation under network dynamics vs.
different constants greater than 1 in CR;

• routing table sizes proportional to node degrees (as each
node stores nothing but its coordinates and the coordi-
nates of its neighbors) vs. polylogarithmic and polyno-
mial in CR with topology-aware and topology-unaware
addressing;

• success ratio nearly 1 (or 1 with boosting techniques)
and minor success ratio degradation under network dy-
namics vs. 1 in CR.

We also juxtapose our approach with recent work [24]
showing that any graph can be embedded in a hyperbolic
space to achieve 100%-successful routing. The approach
in [24] is equivalent to CR [26] in the sense that they both re-
quire global knowledge, i.e., a full view of the graph. The best
way to understand the principal difference between [24, 26]
and our approach is to recognize that we essentially have the
opposite problem formulation. For example, in [24], the prob-
lem is: given the topology of an entire graph, find its embed-
ding in a hyperbolic space such that greedy routing is 100%-
successful. In our case, the problem is: given a hyperbolic
space, check if there exists a simple graph construction pro-
cedure that would naturally yield scale-free topologies, and if
greedy routing on these topologies would be efficient.

This difference in problem formulation results in a signif-
icant difference in what the two approaches can accomplish.
In [24, 26], one performs traditional routing “in the light.”
Knowing the topology of any graph—which requires a lot of
communication overhead in distributed settings—one finds a
way to efficiently route on this topology. The fact that it is
possible to do is by no means surprising, of course. In our

case, we route “in the dark.” Since we do not send any rout-
ing control messages, we cannot know the network topology.
Therefore we cannot efficiently route on an arbitrary network.
We can route efficiently only on the networks whose topolo-
gies are congruent with underlying spaces. We have shown
that scale-free networks appear to be naturally congruent with
hyperbolic spaces that are thus potentially good candidates for
embeddings of the real Internet topology.

To the best of our knowledge, the first mention of hyper-
bolic spaces in the context of the Internet appeared in the work
by Shavitt and Tankel [47, 48]. In this work, the authors con-
sider heuristics embedding Internet distances into hyperbolic
spaces. They showed that the negative curvature of target
spaces improves the efficiency and accuracy of overlay net-
work constructions and Internet delay distance estimations.

Network delay estimation services, e.g. [30, 41, 51] or
Vivaldi [13], try to accurately estimate network delays be-
tween Internet hosts by embedding them into virtual coordi-
nate spaces such that the distances between nodes in this space
are approximately equal to the corresponding inter-node de-
lays. This problem is therefore directly related to the prob-
lem of low-distortion embedding of finite metric spaces into
normed spaces. This related problem has seen significant re-
search progress [33].

More recently, Krauthgamer and Lee [25] refer to network
embedding applications—and, in particular, to [47]—as one
of the motivations for constructing efficient algorithms for
various problems, including routing. The efficiency of the al-
gorithms constructed in this work is rooted in the negative
curvature of underlying metric spaces. In the same paper,
the authors popularize the observation, originally due to Gro-
mov [18, 19], of the intimate connections between hyperbolic
spaces and trees.

The first popularization of greedy routing as a mechanism
that might be responsible for efficient routing “in the dark,”
i.e., without the knowledge of network topology, is due to
J. Kleinberg [22]. A vast amount of literature followed this
seminal work, as reviewed in [23]. This work includes search-
ing the Web [34], social [29, 54], and overlay [46] networks.

Overlay networks, such as CAN [43] or Chord [49] (see
also survey [31]), use greedy routing in the overlay virtual
topology, which does not have to be related to the topology of
the real underlying network.

Another area in networking where greedy routing is a core
element is geographic routing [21, 42]. Since, as in overlay
networks, the network topology may not accurately reflect the
underlying geographic space, one of the main problems in this
line of research is how to deal with local minima.

VII. CONCLUSION

This paper shows that negatively curved spaces lead to nat-
ural emergence of scale-free network topologies, quite simi-
lar to those observed in the Internet and other complex net-
works. Yet more remarkably, greedy routing in these settings
perform exceptionally well, better than all existing propos-
als for compact routing for instance. The reason for this dra-
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matic improvement is a routing paradigm shift: routing no
longer requires any non-local knowledge about observed net-
work topology, but relies solely on hidden geometries to find
paths to destinations. This geometric underpinning drastically
simplifies the routing function that no longer performs any
complicated information processing or computation, but just
forwards packets in the right hidden directions towards des-
tinations. Congruency between observed scale-free topolo-
gies and hidden hyperbolic geometries ensures the efficiency
of such “dumb routing in the dark.” We found that this con-
gruency is strongest and greedy routing is maximally efficient
on scale-free networks with small values of the exponent of
the power-law degree distribution. These small values charac-
terize many real complex networks, including the Internet.

We roughly split potential applications of these findings
in two categories. The first category concerns synthetic net-
works, such as overlays. In this case, we can freely design a
hidden hyperbolic space and build a congruent network topol-
ogy over it. Future work in this direction includes construct-
ing models of networks that grow over hyperbolic spaces. All
the network models considered in this paper generate a whole
network at once, and therefore they are not immediately ap-

plicable for overlay-like applications.
More interesting but also more challenging are the appli-

cations for real networks—the Internet in the first place. The
practical challenges in this case are due to obvious difficulties
in finding the exact structure of hidden hyperbolic spaces un-
derlying real networks, and node coordinates in these spaces.
Indeed, we can hardly expect that the over-simplistic abstrac-
tion of negatively curved geometries provided by the hyper-
bolic plane is a serious candidate for hidden spaces underlying
real networks. However, quite promising is the rigidity prop-
erty of hyperbolic metric spaces [19], suggesting that we do
not have to always know the hyperbolic structure exactly—an
approximate, coarse-grained view of a hyperbolic space often
suffices for practical purposes.

The most promising future research path appears to be a
step-by-step narrowing of the space of possible hidden metric
spaces. One way to proceed is to compare their geometric and
topological properties with the topology data available for the
Internet and other real-world networks. In that context, the
conceptual contribution of this work is that we have narrowed
down the class of hidden metric spaces to spaces of negative
curvature.
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[33] J. Matoušek. Lectures on Discrete Geometry, chapter 15, Em-
bedding Finite Metric Spaces into Normed Spaces. Springer,
New York, 2002.

[34] F. Menczer. Growing and navigating the small world Web by
local content. PNAS, 99:14014–14019, 2002.

[35] D. Meyer, L. Zhang, and K. Fall, editors. Report from the IAB
Workshop on Routing and Addressing. The Internet Architec-
ture Board, 2007.

[36] M. Motiwala, N. Feamster, and S. Vempala. Path splicing: Re-
liable connectivity with rapid recovery. In HotNets, 2007.

[37] L. Muchnik, R. Itzhack, S. Solomon, and Y. Louzoun. Self-
emergence of knowledge trees: Extraction of the Wikipedia hi-
erarchies. Phys Rev E, 76:016106, 2007.

[38] M. Nei and S. Kumar. Molecular Evolution and Phylogenetics.
Oxford University Press, Oxford, 2000.

[39] M. E. J. Newman. The structure and function of complex net-
works. SIAM Rev, 45(2):167–256, 2003.

[40] M. E. J. Newman. Power laws, Pareto distributions and Zipf’s
law. Contemp Phys, 46(5):323–351, 2005.

[41] T. S. E. Ng and H. Zhang. Predicting Internet network distance
with coordinates-based approaches. In INFOCOM, 2002.

[42] A. Rao, S. Ratnasamy, C. Papadimitriou, S. Shenker, and I. Sto-
ica. Geographic routing without location information. In Mo-
biCom, 2003.

[43] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content-addressable network. In SIGCOMM, 2001.

[44] S. Redner. How popular is your paper? An empirical study of
the citation distribution. Eur Phys J B, 4:131–134, 1998.

[45] University of Oregon RouteViews Project. http://www.
routeviews.org/.

[46] O. Sandberg. Distributed routing in small-world networks. In
ALENEX, 2006.

[47] Y. Shavitt and T. Tankel. On the curvature of the Internet and
its usage for overlay construction and distance estimation. In
INFOCOM, 2004.

[48] Y. Shavitt and T. Tankel. Hyperbolic embedding of Internet
graph for distance estimation and overlay construction. To ap-
pear in IEEE ACM T Network, 2008.

[49] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger,
F. Kaashoek, F. Dabek, and H. Balakrishnan. Chord: A scalable
peer-to-peer lookup protocol for Internet applications. IEEE
ACM T Network, 11(1), 2003.

[50] L. Subramanian, M. Caesar, C. T. Ee, M. Handley, M. Mao,
S. Shenker, and I. Stoica. HLP: A next generation inter-domain
routing protocol. In SIGCOMM, 2005.

[51] L. Tang and M. Crovella. Virtual landmarks for the Internet. In
IMC, 2003.

[52] M. Thorup and U. Zwick. Compact routing schemes. In SPAA,
2001.

[53] J. Travers and S. Milgram. An experimental study of the small
world problem. Sociometry, 32:425–443, 1967.

[54] D. J. Watts, P. S. Dodds, and M. E. J. Newman. Identity and
search in social networks. Science, 296:1302–1305, 2002.

http://www.routeviews.org/
http://www.routeviews.org/

	Introduction
	Hyperbolic spaces
	Motivation
	Node taxonomies imply negative curvature of hidden spaces
	Power laws as a consequence of exponential expansion of hidden space

	Models of networks embedded in hyperbolic spaces
	Routing on the modeled networks
	Modeled networks
	Greedy routing
	Static networks
	Dynamic networks
	Random and exponential networks

	Closer look at success ratio

	Related work
	Conclusion
	References

