

table of contents

about the author

Table of contents, Author biography KC Claffy		Point #6 How data is being used	07 -08
Point #1 Updating legal frameworks	02	Point #7 Normal regulatory responses doomed	08 -10
Point #2 Obstacles to progress	02 -03	Point #8 Problematic responses	10 -16
Point #3 Available data: a dire picture	03 -05	Point #9 The news is	16 -19
Point #4 The problem is not so new	05 -06	not all bad Point #10 Solutions will cross	
Point #5 An absurd situation	06	boundaries Sponsors, Credits	
		1 /	

Kimberly Claffy received her Ph. D. in Computer Science from UCSD. She is Director and a principal investigator for CAIDA, and an Adjunct Professor of Computer Science

and Engineering at UCSD. Kimberly's research interests include Internet measurements, data analysis and visualization, particularly with respect to cooperation and sharing of Internet data. She advocates the use of quantitative analysis to objectively inform public Internet policy discussions. Her email is kc@caida.org.

Adapted from:

http://www.caida.org/publications/papers/2008/10_things_Lawyers_Should_Know_About_The_Internet

Last year Kevin Werbach invited me to his Supernova 2007² conference to give a 15minute vignette on the challenge of getting empirical data to inform telecom policy. They posted the

video of my talk last year, and my favorite tech podcast IT Conversations, posted the mps as an episode last week. I clearly needed more than 15 minutes...

In response to my "impassioned plea", I was invited to attend a meeting in March 2008 hosted by Google and Stanford Law School — Legal Futures — a "conversation between some of the world's leading thinkers about the future of privacy, intellectual property, competition, innovation, globalization, and other areas of the law undergoing rapid change due to technological advancement." There I had 5 minutes to convey the most important data points I knew about the Internet to lawyers thinking about how to update legal frameworks to best accommodate information technologies in the 21st century. With a few more months of thought, here is my current top ten list of the most important things lawyers need to understand about the Internet.

All content in this booklet (including text, photographs, graphics, and any other original works), is licensed under a Creative Commons Attribution-No Derivatives 3.0 license.

Kevin Werback bio, http://werbach.com/about.html

ITConversations, http://itc.conversationsnetwork.org/

Supernova 07 Conference archive, http://conversationhub.com/category/supernova07/

[&]quot;Closing the Interactive Loop", http://conversationhub.com/category/supernova07/

[&]quot;No Access To Internet Data", Jun 2007, http://itc.conversationsnetwork.org/shows/detail3440.html

Legal Futures Conference, Mar 2008, http://www.law.stanford.edu/calendar/details/1594/

Creative Commons Attribution-No Derivative 3.0, 2008, http://creativecommons.org/ licenses/by-nd/3.0/

point one point two

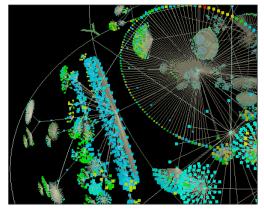
I. Updating legal frameworks to accommodate technological advancement requires first updating other legal frameworks to accommodate empirically grounded research into what we have built, how it is used, and what it costs to sustain.

There is increasing recognition that various legal frameworks (from copyright to privacy to wiretapping to common carriage) need updating in light of technological developments of the last few decades. Unfortunately, the light is too dim to really understand Internet behavior, usage patterns, architectural limitations, and economic constraints, because current legal frameworks for network provisioning also prevent sharing of data with researchers 8 to scientifically investigate any of these questions. Even for data that is legal to share, there are overwhelming counter incentives to sharing any data at all in the competitive environment we have chosen — although not achieved⁹ — for the network provisioning industry.

So while I support updating legal frameworks to be congruent with reality, I think we need to first confront that we have no basis for claiming what reality is yet.

"no aphorism is more frequently repeated... than that we must ask Nature few questions, or ideally, one question at a time. The writer is convinced that this view is wholly mistaken. Nature, he suggests, will best respond to a logically and carefully thought out questionnaire; indeed if we ask her a single question, she will often refuse to answer until some other topic has been discussed." Sir Ronald A. Fisher, Perspectives in Medicine and Biology, 1973.

II. Our scientific knowledge about the Internet is weak, and the obstacles to progress are primarily issues of economics, ownership, and trust (EOT), rather than technical.


Economically, network research is perpetually behind network evolution — basic instrumentation can increase in cost 10X with one network upgrade, while network research budgets are lucky to stay even. But the ownership and trust obstacles are even greater: policy support for scientific Internet research has deteriorated along several dimensions¹⁰ since the National Science Foundation left the scene in 199511, and further when DARPA pulled out of funding academic networking research after 9/1112. Some data points exposing the state of "Internet science":

A. Two decades of Internet research have failed to produce generally usable tools for bandwidth estimation, traffic modeling, usage characterization, traffic matrix estimation, topology mapping, or realistic Internet simulation, with progress primarily blocked on the ability to test them out in realistic network and traffic scenarios. A few researchers who do manage to get data via relationships of mutual trust (including CAIDA) are not allowed to share data with other researchers, inhibiting reproducibility of any result. Compared to established fields of science, it is hard to defend what happens in the field of Internet research as science at all.

B. U.S. (and other) government agencies continue to spend hundreds of millions of dollars per year on network research — with cyber security research being the most fashionable this decade — funding researchers who almost never have any data from realistic operational networks. An illustrative example: the National

Science Foundation's program for Internet secu- Another caveat: most security-related studies rity research 13 spends ~\$35M/year on dozens of are published or funded by companies trying to research projects, none of which have data from sell more security software, their objectivity is operational Internet infrastructure.

C. Not only is traffic data off limits, but sharing data on the structure of the network is forbidden too — commercial ISPs are typically not even allowed to disclose the existence of peering agreements, much less their terms. So when developing tools for accurate Internet mapping, researchers cannot validate the connectivity inferences they make, since the information is typically intended to be secret.

D. OECD published a 53-page report: Measuring security and trust in the online environment: a view using official data¹⁴. As you may have guessed by now, the report about 'measuring security' is based on no measurements from any B. Pervasively distributed end-to-end peering networks, only survey data reflecting user perceptions of their own security, which other stud*ies*¹⁵ have shown to be uncorrelated with reality.

also in dispute. Again, EOT factors render truth elusive.

point three

III. Despite the methodological limitations of Internet science today, the few data points available suggest a dire picture:

A. We're running out of IPv4 addresses that can be allocated (there are many allocated addresses 16 that are not in observed use17, but there is no policy support (yet) for reclamation or reuse)18, and the purported technology solution ($IPv6^{19}$) requires investment that most ISPs are not prepared to make²⁰. Regardless of whether Internet growth is supported by IPv6 or a concerted effort to scrape more lifetime out of the current IPv4 protocol, it will induce growth of core Internet routing tables relying on a routing system that is increasingly inappropriate for the Internet's evolving structure. So while it's fair to say that we need a new routing system²¹, no institution or agency has responsibility for developing one much less the global economic and political challenge of deploying it.

to exchange information is not only threatening the integrity of the routing system, but also the business models of the ISPs²². Although it bears

[&]quot;Toward a Culture of Cybersecurity Research", 2008, http://papers.ssrn.com/sol3/papers. cfm?abstract id=1113014

Telecommunications Act of 1996, http://www.cybertelecom.org/notes/telecomact.htm

[&]quot;Measuring the Internet", Jan 2001, http://www.caida.org/publications/papers/2000/ieee0001/ 10

¹¹ "Post-NSFNET statistics collection", http://www.caida.org/publications/papers/1995/pnsc/

[&]quot;CS profs and the DOD", Sep 2007, http://www.cra.org/govaffairs/blog/archives/000624.html 12

tem/

NSF Trusted http://www.nsf.gov/funding/pgm_summ.jsp?pims Computing id=503326&org=NSF

Measuring Security and Trust in the Online Environment, Jan 2008, http://www.oecd.org/ dataoecd/47/18/40009578.pdf

¹⁵ McAfee/NCSA Cyber Security Survey, Oct 2007, http://download.mcafee.com/products/manuals/enus/McAfeeNCSA Analysis09-25-07.pdf

¹⁶ ANT Censuses of the Internet Address Space, Jun 2008, http://www.isi.edu/ant/address/

¹⁷ Mapping The IPV4 Address Space, Mar 2008, http://maps.measurement-factory.com/

¹⁸ ARIN's Number Resource Policy Manual, Aug 2008, http://www.arin.net/policy/nrpm.html#eight1

¹⁹ ARIN IPv6 Wiki, http://www.getipv6.info/index.php/Main_Page

²⁰ ARIN & CAIDA IPv6 Survey Results, Apr 2008, http://www.arin.net/meetings/minutes/ARIN_XXI/ PDF/monday/IPv6_Survey_KC.pdf

http://blog.caida.org/best_available_data/2007/08/08/it-is-fair-to-say-that-we-need-a-new-routing-sys-21

²² Jan 2008, http://www.geek.com/time-warner-cable-to-experiment-with-internet-access-charges/

noting that the business models for moving Internet traffic around have long been suspect, since the network infrastructure companies that have survived the bubble have done so by spending the last fifteen years manipulating²³ the network architecture²⁴ and the regulatory architecture²⁵ away from the Internet architecture (smart endpoints) toward something they can control (smart network) in order to more effectively monetize their assets²⁶. Since the Internet architecture was originally designed to be a gov*ernment-sponsored file-sharing network*²⁷ with no support for usage-based (or any) billing, its failure as a platform for a purely competitive telecommunication industry²⁸ is not surprising. But we are going to be so surprised.

C. There are demonstrated vulnerabilities in the most fundamental layers of the infrastructure (naming²⁹ and routing³⁰) for which technological³¹ solutions³² have been developed but have failed to gain traction under the political³³ and economic constraints³⁴ of real-world deployment In the meantime, over 98% of traffic sent to root domain name servers is pollution³⁵.

D. The common lawyerly assumption that "the Internet security situation must not be so bad

because the network is still pretty much working" discounts the fact that criminals using the Internet need it to work just as well as the rest of us. Although we admit we don't know how to measure the exact size of botnets³⁶ what we know for sure is that millions of compromised (Windows) systems³⁷ are taking advantage of network and host software vulnerabilities to support unknown (but underground estimates are many) billions of dollars per year of criminal activities (or activities that would be criminal if lawmakers understood enough to legislate against them) with no incentive framework to support their recovery. Although ICANN is trying to set policies to counter some of the malfeasance³⁸ that arguably falls under its purview (domain names and IP addresses), ICANN lacks the architecture and legitimacy it needs to enforce any regulations³⁹, and continues to struggle more

than succeed at its own mission⁴⁰.

We don't have a lot of data about the Internet, but what little we have is unequivocally cause for concern.

point four

IV. The data dearth is not a new problem in the field; many public and private sector efforts have tried and failed to solve it.

A. Information Sharing and Analysis Centers, such as those that exist for the *financial services industry*⁴¹ have been *attempted*⁴² several times, but there is no research activity or channel to share data with the research community, nor any independent analysis of the performance or progress of such a group.

B. The National Science Foundation has spent at least \$1M on CAIDA's *Internet measure-ment data catalog*⁴³ to support sharing of Internet measurements, but as a science and engineering funding agency, NSF could only fund the technical aspects of the data sharing activity: *developing a database*⁴⁴ to support curation, indexing, and annotation of Internet

data collected by researchers and providers. Since the real obstacles have to do with economic, ownership (legal), and trust (privacy) constraints rather than technology issues, this catalog has been *less utilized*⁴⁵ than we hoped.

C. Recognizing that the data sharing problem constitutes a threat to national security⁴⁶ the U.S. Department of Homeland Security (specifically, HSARPA47) has spent 4 years developing a project — PREDICT⁴⁸ to facilitate protected sharing of realistic network data that will enable cybersecurity researchers to validate the network security research and technologies they develop. Unfortunately after four years the PREDICT project has not yet launched, and when it does it will not be able to include data on networks that serve the public⁴⁹, since the legal territory is too muddy for DHS lawyers to navigate while *EFF lawsuits*⁵⁰ have everyone in the U.S. government skittish about acknowledging surveillance of any kind. Even the private networks that PREDICT can serve immediately, such as Internet251 (the research backbone in the U.S. serving a few hundred⁵² educational, commercial, government, and international partners) have lamented that the PREDICT framework does not solve their two biggest problems: sketchy legal territory, and fear of RIAA subpoenas and/or lawsuits. Meanwhile, other accounts⁵³ (from non-objective parties⁵⁴, with no data sources) claim that

45

²³ **Telecommunications Act of 1996**, http://www.cybertelecom.org/notes/telecomact.htm

^{24 &}quot;The Walled Garden: Access To Internet and Digital Computer Communications Technology", Apr 1996, http://homepages.ed.ac.uk/ajwil/disa.html

Telecommunications Act of 1996, http://www.fcc.gov/telecom.html

²⁶ IMS 'Reality Check', http://ims-insider.blogspot.com/2006/04/ims-reality-check.html

²⁷ http://en.wikipedia.org/wiki/Arpanet

^{28 &}quot;Consolidation Leads to ISP Shake-Out in Europe", Jul 2001, http://www.thewhir.com/features/consolidation.cfm

²⁹ Oct 2006, http://www.ripe.net/ripe/meetings/ripe-53/presentations/whats_wrong_with_dns.pdf

^{30 &}quot;Tubular Routing", Mar 2008, http://www.potaroo.net/ispcol/2008-03/routehack.html

³¹ **Domain Name System Security Extensions**, http://en.wikipedia.org/wiki/DNSSEC

³² **Secure BGP Project (S-BGP)**, http://www.ir.bbn.com/sbgp/

^{33 &}quot;DNSSEC-The Opinion", http://ispcolumn.isoc.org/2006-10/dnssec3.html

^{34 &}quot;Operational Requirements for Secured BGP", http://www.cs.columbia.edu/~smb/talks/dhs-routing.pdf

³⁵ Comparison of Traffic from DNS Root Nameservers in DITL 2006 and 2007, http://www.caida.org/research/dns/roottraffic/comparison06_07.xml#concl

Kanich, et al., "The Heisenbot Uncertainty Problem: Challenges in Separating Bots from Chaff", http://www.cs.ucsd.edu/~voelker/pubs/heisenbot-leet08.pdf

³⁷ http://en.wikipedia.org/wiki/Botnets#References

³⁸ http://www.icann.org/public_comment/#domain-tasting

^{39 &}quot;ICANN Reform: Establishing the Rule of Law", Nov 2005, http://www.prism.gatech.edu/%7Ehk28/ICANN_Rule-of-Law.pdf

⁴⁰ Feb 2008, http://www.icann.org/general/bylaws.htm#I

⁴¹ Financial Services-Information Sharing and Analysis Center, http://fsisac.com/

⁴² Information Sharing and Analysis Center (ISAC), Jan 2001, http://www.ntia.doc.gov/ntiahome/press/2001/itsac011601.htm

^{43 &}quot;Correlating Heterogeneous Measurement Data to Achieve System-Level: Analysis of Internet Traffic Trends", Aug 2001, http://www.caida.org/funding/trends/

DatCat, indexed Internet measurement data, http://www.datcat.org/

DatCat traffic summary, Aug 2008, http://imdc.datcat.org/stats/index.html

⁴⁶ http://blog.caida.org/best_available_data/2008/03/25/we-should-be-able-to-do-a-much-better-job-at-modeling-internet-attacks/

⁴⁷ http://en.wikipedia.org/wiki/Homeland Security Advanced Research Projects Agency

⁴⁸ Protected Repository for the Defense of Infrastructure Against Cyber Threats (PREDICT), https://www.predict.org/

⁴⁹ Privacy Impact Assessment for PREDICT, Feb 2008, http://www.dhs.gov/xlibrary/assets/privacy/privacy_pia_st_predict.pdf

⁵⁰ NSA Spying, cases and resources, http://www.eff.org/issues/nsa-spying

⁵¹ http://www.internet2.edu

⁵² Internet 2 Members list, Jul 2008, http://www.internet2.edu/resources/Internet2MembersList.PDF

[&]quot;Comments of NBC Universal, Inc., to the Federal Communications Commission", http://www.publicknowledge.org/pdf/nbc-fcc-noi-20070615.pdf

^{54 &}quot;The Movie Industry's 200% Error", http://insidehighered.com/views/2008/01/29/green

the vast majority of traffic on the Internet is *illegal by* current laws⁵⁵ and ISPs should be held accountable⁵⁶ for *preventing this traffic*⁵⁷. Given the exposure to copyright lawsuits for file-sharing (ironically, what the Internet was *originally designed*⁵⁸ to do), the counter incentives to sharing data on operational networks grow stronger by the day.

point five

V. Thus the research community is in the absurd situation of not being able to do the most basic network research even on the networks established explicitly to support academic network research.

This inability to do research on our own research networks leads to contradictions in our field of "science" that cannot be resolved, including on the most politically relevant network research questions of the decade: what are the costs and benefits of using QOS to support multiple service classes, to users as well as providers, and how should these service classes be determined? Two research papers on this same topic contradict each other — Why Premium IP Service Has Not Deployed (and Probably Never Will⁵⁹) from Internet260 (the U.S. research and education backbone) and The Evolving Internet - Traffic, Engineering, and Roles⁶¹ from ATT — with neither paper offering actual network data, although the Internet2 paper claims to be based on data from the Internet2 backbone. The ATT paper uses unsubstantiated numbers from invalidated sources on the web and a model and simulation

construction with parameters arranged to prove the need for the kind of traffic management behavior that ATT lobbyists are trying to justify to regulators and their customers. As with many other questions about network architecture, behavior, and usage, there are valid (i.e., empirically validated) inferences to make regarding QoS versus the alternatives, which could immediately inform telecom and media policy, but researchers are not in a position to make them.

point six

VI. While the looming problems of the Internet⁶² indicate the need for a closer objective look, a growing number of segments of society have network measurement access to, and use, private network information on individuals for purposes we might not approve of if we knew how the data was being used.

To the extent that we are investing public or private sector dollars in trying to measure the Internet, they are not in pursuit of answers to questions related to the overall network infrastructure's health, system efficiency or end-toend performance, or any of the questions that engineers would recommend knowing about a communications system. The measurements happening today are either for national security⁶³or business purposes⁶⁴, which both have an incentive to maximize the amount of personal

information they extract⁶⁵ from the data. No one for real data⁷⁷ in the U.S. do support the claim is investing in technology to learn about net- that the current Internet transit business model is works while minimizing the amount of privacy broken⁷⁸. Whether the growth in traffic is due to compromised in the process. This inherent in- http transport of user-generated video⁷⁹, or radiformation asymmetry66 of the industry is at the cally distributed80 peer-to-peer file sharing (also root of our inability to verify claims⁶⁷ regarding often video⁸¹), there is strong evidence⁸² from either security⁶⁸ or bandwidth crises⁶⁹ justifying network providers themselves⁸³ that the majorcontroversial business practices⁷⁰ that threaten an ity of bytes⁸⁴ on the network are people moving admittedly fuzzy, but *increasingly popular*⁷¹ con- *files*⁸⁵ from machine to machine, often the same cept of Internet access rights. 72 Although the little files moving from a few sources to many users. data that researchers can scrape together⁷³, most Unfortunately, this evidence implies that the of it from outside the U.S., do not support the current network and policy architectures are "p2p is causing a bandwidth problem74" claim, astonishingly inefficient86, and that clean slate87

the press releases 75 we see as a popular 76 substitute Internet researchers 88 should be thinking about

http://en.wikipedia.org/wiki/Information_asymmetry

67 "Threats to the Internet: Too Much or Too Little Growth", Feb 2008, http://www.internetevolution. com/author.asp?section_id=592&doc_id=146747

68 "Cybersecurity measure unduly secretive", http://www.usatoday.com/tech/news/techpolicy/2002-07-25-cybersecurity-backlash_x.htm

"Does Bell Really Have a P2P Bandwidth Problem?", Apr 2008, http://www.circleid.com/ posts/841710_bell_p2p_bandwidth_problem/

"Comcast opens up about how it manages traffic", http://www.usatoday.com/printedition/ money/20080421/nightmareside.art.htm

71 The internet freedom fight goes to Washington. http://www.savetheinternet.com/

72 "Bill of Internet Access Rights", Jun 2006, http://www.isi.edu/touch/internet-rights/ 73

A Day In The Life of the Internet: A Summary of the January 9-10, 2007 Collection Event, http:// www.caida.org/projects/ditl/summary-2007-01/#participants

74 See footnote 69

75 Minnesota Internet Traffic Studies (MINTS), 2002, http://www.dtc.umn.edu/mints/ispreports.html

76 "Unleashed the 'Exaflood", Feb 2008, http://online.wsj.com/article_email/SB120363940 010084479lMyQjAxMDI4MDIzMjYyMzI5Wj.html

Internet Study 2007: The Impact of P2P File Sharing, Voice over IP, Skype, Joost, Instant Messaging, One-Click Hosting and Media Streaming such as YouTube on the Internet, http://www.ipoque.com/ news_&_events/internet_studies/internet_study_2007

"Avoiding Net traffic tie-ups could cost you in the future", http://www.usatoday.com/printedition/ money/20080421/network_nightmarecov.art.htm

Youtube, http://www.youtube.com/

80 http://www.p2pfoundation.net/P2P_Computing

81 http://torrentfreak.com/japanese-file-sharing-population-explodes-071221/

"Comments of AT&T on petitions of Free Press, Vuze, et al.. before the Federal Communications Committee in the matter of broadband industry practices", Feb 2008, http://gullfoss2.fcc.gov/prod/ecfs/retrieve.cgi?native_or_pdf=pdf&id_document=6519841106

83 "Comments of Verizon before the FCC in the matter of broadband industry practices", Feb 2008, http://gullfoss2.fcc.gov/prod/ecfs/retrieve.cgi?native_or_pdf=pdf&id_document=6519841190

"Comments of Comcast Corporation before the FCC in the matter of broadband industry practices", Feb 2008, http://gullfoss2.fcc.gov/prod/ecfs/retrieve.cgi?native_or_pdf=pdf&id_document=6519840991

"Comments of Time Warner Cable Inc., before the FCC in matters of broadband industry practices", Feb 2008, http://gullfoss2.fcc.gov/prod/ecfs/retrieve.cgi?native_or_pdf=pdf&id_document=6519841176

"Democracy Now! Saves \$1,000 a month with bittorrent", Feb 2008, http://www.getmiro.com/ blog/2008/02/huge-cost-savings-bittorrent-vs-http/

http://cleanslate.stanford.edu/

FIND (Future Internet Design), NSF research program whose goal is to consider requirements for a global network of 15 years from now, and how we would build such a network if we could design it from scratch, http://www.nets-find.net/

Make extra money with a Google search box, http://www.google.com/services/adsense_tour/page6. html 66

⁵⁵ "Home Copying - burnt into teenage psyche", Apr 2009, http://www.guardian.co.uk/technology/2008/ apr/07/digitalmusic.drm

[&]quot;IFPI hails court ruling that ISPs must stop copyright piracy on their networks", http://www.ifpi. org/content/section_news/20070704b.html

⁵⁷ "AT&T and Other I.S.P.'s May Be Getting Ready to Filter for copyrighted content at the network level", http://bits.blogs.nytimes.com/2008/01/08/att-and-other-isps-may-be-getting-ready-to-filter/index.html 58 http://en.wikipedia.org/wiki/Arpanet

⁵⁹ "Why Premium IP Service Has Not Deployed (and Probably Never Will)", http://qos.internet2.edu/ wg/documents-informational/20020503-premium-problems-non-architectural.html

http://www.internet2.edu/

⁶¹ "The Evolving Internet - Traffic, Engineering, and Roles", http://web.si.umich.edu/tprc/ papers/2007/786/Evolving%20Internet.pdf

⁶² "Top problems of the Internet and what can be done to help", http://www.caida.org/publications/ presentations/2005/topproblemsnet/

⁶³ "Bush Order Expands Network Monitoring", Jan 2008, http://www.washingtonpost.com/wp-dyn/content/article/2008/01/25/AR2008012503261.html?hpid=moreheadlines

[&]quot;Should AT&T police the Internet", Jan 2008, http://news.cnet.com/Should-ATT-police-the-Internet /2100-1034_3-6226523.html?part=rss&tag=2547-1_3-0-20&subj=news

how to create truly scalable⁸⁹ inter-domain routing90 and policy architectures91 that are contentcentric92, leverage our best understanding of the structure of complex networks93, and still manage to respect privacy94. No easy trick, especially with no viable deployment path for such a new architecture, at least in the U.S. where we have jettisoned the policy framework95 that allowed innovations% like the Internet. It should be no surprise if the status quo is unsustainable⁹⁷, since we are using the network quite differently 98 from how it was intended99. But if a new network architecture is needed, that's a discussion that needs to include some validated empirical analysis of

what we have already built. So long as the network infrastructure companies are so counterincented to share data¹⁰⁰, we will continue having

to make trillion-dollar communication and technology policy decisions in the dark.

point seven

VII. The traditional mode of getting data from public infrastructures to inform policymaking — regulating its collection — is a quixotic path, since the government regulatory agencies¹⁰¹ have as much reason to be reluctant 102 as providers 103 regarding disclosure of how the Internet is engineered, used, and financed.

For every other critical infrastructure in society we have devoted a government agency to its stewardship. The Internet was designed for a cooperative 104 rather than competitive policy architecture, so its designers did not consider regulatory aspects. But as a communications infrastructure serving the public, most regulatory aspects of Internet fall under the jurisdiction of the agency who regulates the *tubes*¹⁰⁵ it typically runs atop: in the United States that means the FCC. Unfortunately, the FCC is not completely up to speed¹⁰⁶ on the Internet, and does not even

approve of how it is measuring broadband penetration107. The FCC has no empirical basis in fact nor apparent authority¹⁰⁸ in a conversation about traffic, structure, pricing, or vulnerabilities on the network since it has no access to data from Internet infrastructure beyond what providers volunteer to provide. And yet *little da*ta¹⁰⁹ is needed to reveal that the Internet's underlying network architecture, implementation, and usage is fundamentally inconsistent with almost ev-

ery aspect of our current communications and Hence it should be no surprise if solutions to deep skepticism on current legal frameworks for copyright, wiretapping, and privacy, as well as transforms or destroys dozens of industries that hold great economic and political power today.

regulation, from wiretapping110 to disaster recovery¹¹¹ to unstable¹¹² leadership¹¹³ lamenting its budgetary and policy handicaps, 114 inspire concern¹¹⁵ than hope. That over 1% of observed web pages are modified in flight without our knowledge¹¹⁶ is no source of comfort¹¹⁷ either.

media policy architecture. The Internet sheds measurement, like other persistent problems of the Internet¹¹⁸, require engaging deeply with economics, ownership and trust issues. Alas, Internet economics research is one of the few fields worse off¹¹⁹ than Internet traffic or topology research with regard to the ability to validate any The national security components of Internet models or assumptions. (If you think tcpdump and traceroute are replete with measurement error, you should try analyzing the economics of network infrastructure companies. And if you think packet header and internal topology data is hard to get, you should try to get financial numbers from the same companies broken out by service offered so you could see how the ec-

⁸⁹ "On Compact Routing for the Internet", http://www.caida.org/publications/papers/2007/compact_ routing/

⁹⁰ Routing Research Group, http://www.irtf.org/charter?gtype=rg&group=rrg

⁹¹ "Retrograde Inversion", Apr 2008, http://scrawford.net/blog/retrograde-inversion/1148/

⁹² http://en.wikipedia.org/wiki/Content-centric_networking

⁹³ "Self-similarity of complex networks and hidden metric spaces", http://www.caida.org/publications/papers/2008/self similarity/

⁹⁴ Electronic Privacy Information Center, http://epic.org/

⁹⁵ National Cable & Telecommunications Association et al. v. Brand X Internet Services et al., 2005, http://www.law.cornell.edu/supct/html/04-277.ZS.html

⁹⁶ Common Carriers, http://www.cybertelecom.org/notes/common carrier.htm

⁹⁷ "PNSol: Answer to the broadband riddle?", http://www.telco2.net/blog/2008/04/post_13.html

⁹⁸ PEW /Internet Reports: Online Activities, http://www.pewinternet.org/PPF/c/1/topics.asp

⁹⁹ Inventing the Internet, Jul 2000, http://www.amazon.com/Inventing-Internet-Inside-Technology-

Abbate/dp/0262511150/

¹⁰⁰ See footnote 8

¹⁰¹ Bureaucracy: What Government Agencies Do And Why They Do It, Jan 1991, http://www.amazon.com/Bureaucracy-Government-Agencies-Basic-Classics/dp/0465007856/

¹⁰² "Can the FCC Handle The Truth?", Apr 2008, http://www.publicknowledge.org/node/1529

¹⁰³ "If Comcast Shares Broadband Deployment Data, The Terrorists Win", Mar 2008, http://www. dslreports.com/shownews/If-Comcast-Shares-Broadband-Deployment-Data-The-Terrorists-Win-92408

[&]quot;Tward A Cooperative Network Of Time-Shared Computers", Nov 1966, http://www.packet.cc/

¹⁰⁵ Senator Ted Stevens talking about the Net Neutrality Bill: "Series of Tubes", http://www.youtube. com/watch?v=f99PcP0aFNE

[&]quot;FCC to start collecting more detailed broadband info", Mar 2008, http://www.rcrnews.com/apps/ pbcs.dll/article?AID=/20080321/SUB/669906587/1005/allnews

http://blog.caida.org/best_available_data/2008/03/30/measuring-broadband-penetration/

¹⁰⁸ "Comcast: FCC lacks any authority to act on P2P blocking", Mar 2008, http://arstechnica.com/ news.ars/post/20080318-comcast-fcc-lacks-any-authority-to-act-on-p2p-blocking.html

¹⁰⁹ See point three

¹¹⁰ "Congress worries that .gov monitoring will spy on Americans", Feb 2008, http://news.cnet. com/8301-10784 3-9882031-7.html

¹¹¹ "Internet Infrastructure: Challenges in Developing a Public/Private Recovery Plan", 2006, http:// www.gao.gov/cgi-bin/getrpt?GAO-06-1100T

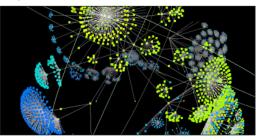
¹¹² "Help (still) wanted: Cybersecurity czar", Jul 2006, http://news.cnet.com/Help-still-wanted-Cybersecurity-czar/2100-7348_3-6094055.html

[&]quot;Cybersecurity czar will have hard road ahead", Jun 2005, http://www.securityfocus.com/ 113 news/11194

¹¹⁴ "RSA: Chertoff Likens U.S. Cyber Security to 'Manhattan Project'", Apr 2008, http://www.informationweek.com/news/security/government/showArticle.jhtml?articleID=207100489

[&]quot;Will the next U.S. president lead on cybersecurity?", Oct 2007, http://news.cnet.com/8301-10784 3-9807450-7.html

[&]quot;Detecting In-Flight Page Changes with Web Tripwires", http://www.usenix.org/events/nsdi08/tech/ full papers/reis/reis html/index.html


[&]quot;The Digital Imprimatur: How big brother and big media can put the Internet genie back in the bottle", Sept 2003, http://www.fourmilab.ch/documents/digital-imprimatur/

¹¹⁸

¹¹⁹ http://blog.caida.org/best_available_data/2007/10/07/internet-infrastructure-economics-top-ten-thingsi-have-learned-so-far/

omics are actually evolving 120.)

Unfortunately (again) understanding the economics of the system is not where spare private or public sector capital is going. In the 1990's the telecoms spent their capital suing each other¹²¹ and the government¹²² over laws so vaguely written¹²³ as to defy consistent interpretation¹²⁴, much less measurable enforcement, across any two constituencies¹²⁵ in the ecosystem. This decade we are spending our capital suing the telecoms¹²⁶ for not suing the government after 9/11 when the government asked them to break laws¹²⁷ that are

just as outdated as the copyright laws¹²⁸. Thomas Jefferson¹²⁹ would no doubt recommend rewriting all of it from scratch¹³⁰. Unfortunately the timing is bleak: these developments are occurring at a time when sustaining Internet growth¹³¹ (which, no, we still do not have good ways to measure¹³²..) will require extraordinary investment of

capital, as well as realignment of incentives¹³³ to promote cooperation among competitive players. Where does that capital and incentive to cooperate come from?

point eight

VIII. The opaqueness of the infrastructure to empirical analysis has generated many problematic responses from rigidly circumscribed communities earnestly trying to get their jobs done.

A. To its credit, the *IETF*¹³⁴ acknowledged and endeavored to solve the technical limitations of the current *IPv4 protocol*¹³⁵, primarily the *insufficient number of addresses*¹³⁶ and the *inherent scalability limitations of*¹³⁷ the routing architecture¹³⁸. To its *chagrin*¹³⁹, the IETF learned that neither the *philospher king nor rough consensus-based*¹⁴⁰ approach would yield an architecture that made progress on both problems at the same time. So the IETF *punted on the routing problems*¹⁴¹ since they seemed further away, and focused on building a new network architecture that had a larger number of addresses, and *some other*¹⁴² stuff most people don't usually mention. But because today's addressing and routing architectures are

fundamentally related¹⁴³ a larger number of addresses actually exacerbates the routing problem, getting us closer to the wall that seemed further away. In the meantime, the current IPv4 routing table is already splintering into smaller pieces as network operators engineer finer-grained control over traffic patterns. So, while IPv6 exists as a set of technologies, many experts are grim about its future, since it doesn't solve¹⁴⁴ the fundamental routing scalability problem.

B. Most network operators ¹⁴⁵, especially for-profit ones, cannot justify the investment to deploy IPv6 when their customers are not asking for it ¹⁴⁶, and their customers won't ask for it until they can no longer get IPv4 addresses. Large network operators continue to remind IETF engineers that they didn't solve the problem the network operators really need solved ¹⁴⁷. Operators do realize they are all in this together, but they aren't institutionally structured to think longer than five years out ¹⁴⁸. They also lack the capital, legal framework, and incentive to develop an alternative replacement, even in partnership with their suppliers. (The last time we upgraded the network architecture ¹⁴⁹ the network was under the cont-

rol of not only the U.S. government but the U.S. military¹⁵⁰. And it still took a couple of rounds of threats to cut off funding to attached sites who did not upgrade!) Instead, operators are busy experimenting with business models to try to figure out how to make a profit on IP transit, e.g., fancy QOS services that customers aren't asking for 151, metered pricing¹⁵² (known to have its own problems¹⁵³), or giving up and getting rid of the part of the company that moves IP traffic around¹⁵⁴. They have also recently experimented with reforming their industry trade meetings¹⁵⁵ to be more useful given that they aren't authorized to share any significant information about their own networks. In the meantime, if they have one, they heavly subsidize from the magnificently profitable wireless¹⁵⁶ side of the company while they build the case for more deregulation.

C. Thinking about the health of the Internet ten years out or longer should theoretically happen within the stewardship missions of *ICANN*¹⁵⁷ and the ICANN-rooted *address registries*¹⁵⁸, who lease Internet address space based on *demonstrated need*¹⁵⁹. The ICANN and registry communit

Reciprocal Compensation, http://www.cybertelecom.org/broadband/Rcomp.htm

¹²⁶ http://www.eff.org/nsa

¹²⁷ http://en.wikipedia.org/wiki/NSA_warrantless_surveillance_controversy

http://en.wikipedia.org/wiki/Foreign_Intelligence_Surveillance_Act_of_1978

¹²⁹ **The Thomas Jefferson Hour**, http://www.jeffersonhour.org/

Thomas Jefferson Hour episode: Constitutional Convention, http://makochemedia.com/files/Show%20672%20Constitutional%20Convention.mp3

¹³¹ **"Eight Bold Steps To A National Broadband Strategy:", Jan 2007**, http://www.baller.com/pdfs/baller-lide_8Steps_NatBBStrategy.pdf

[&]quot;IPv6 Deployment: Just where are we?", Apr 2008, http://www.potaroo.net/ispcol/2008-04/ipv6. html

[&]quot;CAIDA and ARIN Release IPv6 Survey", Apr 2008, http://www.circleid.com/posts/84136_caida_arin_ipv6_survey/

¹³⁴ **Internet Engineering Task Force**, http://www.ietf.org/overview.html

¹³⁵ **Internet Protocol version 4 (IPv4)**, http://en.wikipedia.org/wiki/IPv4

¹³⁶ **IPv4 exhaustion**, http://en.wikipedia.org/wiki/IPv4#Exhaustion

[&]quot;Models of policy based routing", Jun 1989, http://www.faqs.org/rfcs/rfc1104.html

NSFNET routing architecture, Feb 1989, http://www.faqs.org/rfcs/rfc1093.html

^{139, 140} Process for Organization of Internet Standards Working Group (POISED), Jun 1994, http://www.apps.ietf.org/rfc/rfc1640.html

¹⁴¹ **"Lessons from IPv6"**, http://www.cs.columbia.edu/~smb/talks/ipv6-lessons.pdf

¹⁴² **Internet Protocol version 6 (IPv6)**, http://en.wikipedia.org/wiki/IPng

^{143 &}quot;RFC4116 - IPv4 Multihoming Practices and Limitations", Jul 2005, http://www.faqs.org/rfcs/rfc4116.html

[&]quot;Storm clouds looming for Internet, experts say", Apr 2008, http://www.infoworld.com/article/08/04/17/Storm-clouds-looming-for-Internet-experts-say_2.html

Nanog (North American Network Operators' Group), http://www.nanog.org/

ARIN & CAIDA IPv6 Survey Results, Apr 2008, http://www.arin.net/meetings/minutes/ARIN_XXI/PDF/monday/IPv6 Survey KC.pdf

¹⁴⁷ ****RFC4116 - IPv4 Multihoming Practices and Limitations"**, **Jul 2005**, http://www.faqs.org/rfcs/rfc4116.html

The Art of the Long View: Planning for the Future in an Uncertain World, 1991, http://www.gbn.com/BookClubSelectionDisplayServlet.srv?si=361

⁴⁹ http://en.wikipedia.org/wiki/Network_Control_Protocol

¹⁵⁰ **U.S. Department of Defense**, http://www.defenselink.mil/

¹⁵¹ See footnote 61

^{152 &}quot;Time Warner Cable to experiment with Internet access charges", Jan 2008, http://www.geek.com/time-warner-cable-to-experiment-with-internet-access-charges/

¹⁵³ **"Why Metered Broadband Slows Internet Innovation"**. http://www.techdirt.com/articles/200709 11/194749.shtml

¹⁵⁴ **"Time Warner to unplug cable business", Apr 2008**, http://www.ft.com/cms/s/0/42e6616a-16a7-11dd-bbfc-0000779fd2ac.html

[&]quot;NANOG Evolution-What's Next?", http://www.nanog.org/evolution.html

^{156 &}quot;Led by Wireless Unit, AT& T Reports a 21.5% Gain", Apr 2008, http://www.washingtonpost.com/wp-dyn/content/article/2008/04/22/AR2008042202921.html

¹⁵⁷ See footnote 40

The Address Supporting Organization: http://aso.icann.org/about.html

ARIN Number Resource Policy Manual, http://www.arin.net/policy/nrpm.html

ies recognize the limitations of IPv6, and by now also the *limitations of the IETF*¹⁶⁰. IETF experts are similarly astute¹⁶¹ about the problems with ICANN¹⁶². And of course both communities are aware of the pressure on the current address space. Since IPv6 is the only existing solution, they both promote IPv6 deployment 163, although they lack reliable methods164 to measure IPv6 uptake¹⁶⁵ without data from operators¹⁶⁶. So, this year they are finally re-discussing a backup plan: privatizing IPv4 address markets167, in case they run out of IPv4 addresses168 before IPv6 gains traction. There is little background169 research on the implications¹⁷⁰ of private ownership of addresses¹⁷¹, but what exists is not auspicious¹⁷². Furthermore, the possibility that a legitimate market for IPv4 address may emerge will itself

impede the uptake of IPv6, so the bottom-up registries are inherently conflicted regarding the problem they're trying to solve.

D. Meanwhile, over in the media policy¹⁷³, reform¹⁷⁴, passionate activist¹⁷⁵, and well-intentioned legal scholar¹⁷⁶ corner of cyberspace, it is as if Eli Noam¹⁷⁷'s warning about the imminent death of common carriage¹⁷⁸ were not published fourteen years ago. Despite the lack of any proposed operationally enforceable definition¹⁷⁹ of network neutrality, the conversation thrives¹⁸⁰— an understandable post-traumatic reaction to the recent jettison of at least eight centuries of legal doctrine¹⁸¹ from our primary communications fabric. Even the FCC is looking for ideas¹⁸² (strangely, they're explicitly not interested in data¹⁸³, despite clear indications¹⁸⁴ that the free ma-

160 "Into the Future with the Internet Vendor Task Force - A very Curmudgeonly View or Testing Spaghetti - a Wall's Point of View", http://rip.psg.com/~randy/051000.ccr-ivtf.html

- "An ICANN reform plan", Jun 2002, http://www.alvestrand.no/icann/splitting.html
- ARIN IPv6 Wiki, http://www.getipv6.info/index.php/Main_Page
- See footnote 132
- 165 **IPv6 AS-level Topology 2008,** http://www.caida.org/research/topology/as_core_network/ipv6.xml
- 166 See footnote 146
- 167 **IPv4 Transfer Policy Proposal (2008-2)**, http://www.arin.net/policy/proposals/2008_2.html
- "The End of the (IPv4) World is Nigher! ", Jul 2007, http://www.potaroo.net/ispcol/2007-07/v4end.html
- 169 "RFC1744 Observations on the Management of the Internet Address", Dec 1994, http://www.faqs.org/rfcs/rfc1744.html
- 170 "RFC 1744 and its discontents", http://lists.arin.net/pipermail/ppml/2008-April/010639.html
- 171 "Financial Incentives for Route Aggregation and Efficient Address Utilization in the Internet", 1996, http://www.cs.columbia.edu/~smb/papers/piara/Final.htm
- 172 **"Address Ownership' Considered Fatal", Mar 1995**, ftp://ftp.ietf.org/ietf-online-proceedings/95apr/area.and.wg.reports/ops/cidrd/cidrd.rekhter.slides.ps
- 173 **Media Access Project**, http://www.mediaaccess.org/
- 174 **Free Press**, http://www.freepress.net/
- 175 http://www.savetheinternet.com/
- 176 "Why You Should Care About Network Neutrality", May 2006, http://www.slate.com/id/2140850/
- 177 Eli M. Noam bio, http://www.citi.columbia.edu/elinoam/
- "Beyond Liberalization II: The Impending Doom of Common Carriage", Mar 1994, http://www.columbia.edu/dlc/wp/citi/citinoam11.html
- 179 "OPINION: Would the real Network Neutrality please stand up?", Nov 2005, http://www.telepocalypse.net/archives/000822.html
- "Net Neutrality's Quiet Crusader: Free Press's Ben Scott Faces Down Titans, Regulators in Battle Over Internet Control", Mar 2008, http://www.washingtonpost.com/wp-dyn/content/article/2008/03/27/AR2008032703618.html?hpid=sec-business
- http://www.isen.com/blog/2007/05/making-network-neutrality-sustainable.html
- 182 "FCC seeks public comment on network neutrality", Jan 2008, http://www.cedmagazine.com/FCC-seeks-public-comment-on-network-neutrality.aspx
- 183 **"FCC chief backs AT&T bid to waive cost data", Apr 2008**, http://www.reuters.com/article/governmentFilingsNews/idUSN2433101820080424?feedType=RSS&feedName=governmentFilingsNews&rpc=408
- "Telecom carriers: 'Phantom' voice traffic costing billions", Apr 2008, http://www.infoworld.com/article/08/04/23/Telecom-carriers-Phantom-voice-traffic-costing-billions_1.html

rket evolution of IP economics¹⁸⁵ is the root cause¹⁸⁶ of the mess.) When the dizziness subsides, we will have to acknowledge that the carriers are right: it would be a disaster if the government told carriers how to manage congestion on their networks¹⁸⁷, which is why the endgame must be—as it has always been with essential facilities and common carriage—that carriers do not have financial interest in the content of what they're carrying. But that idea—although it is the same type of structural regulation that made the Internet possible—offends any capitalist sense of profit margins.

E. Academic Internet researchers also operate in a *funding environment*¹⁸⁸ that does not promote *tackling 10-year problems*¹⁸⁹, nor are they equipped to navigate the conflict of interests between the university and the providers of network data. Providers either legally cannot or are reluctant to share data without restrictions on what can be published about their network, and universities have rules limiting such restrictions. And so federal agencies funding research continue to spend millions of R&D dollars per year

developing *lots*¹⁹⁰ of *technology*¹⁹¹, even *legal tech*nology¹⁹² to promote data retention¹⁹³ and sharing¹⁹⁴, but the agencies and the taxpayers they represent get little in return. A related problem is that the lack of experience with data sharing in an admittedly quite young field of science means that there is no established *code-of-conduct*¹⁹⁵ for protecting 196 user privacy 197 and engaging with Institutional Review Boards 198 to navigate ethical issues in Internet measurement research. Worse yet, conservative interpretations of the current relevant statutes conclude that most network measurement research is currently approximately illegal¹⁹⁹, but there is no consensus on what kind of legislative changes are needed200, if any. The stunted legal process prevents sharing of data sets that could help solve immediate problems, but the collateral damage is that it prevents informed discussion of what even needs to be known on the net, and who needs to know it. Do we want to know how much peer-to-peer traffic is transiting backbone links? How much encrypted traffic? How much copyrighted traffic? Right now there is insufficient access to data to any of

¹⁶¹ **IETF** (Internet Vendor Task Force) summary, Sep 2002, http://www.ripe.net/ripe/meetings/ripe-43/presentations/ripe43-plenary-ietf-icann/sld022.html

^{185 &}quot;The Evolution of U.S. Internet Peering Ecosystem", Nov 2003, http://www.nanog.org/mtg-0405/pdf/norton.pdf

[&]quot;Where's the Money? - Internet Interconnection and Financial Settlements", Jan 2005, http://isp-column.isoc.org/2005-01/interconns.html

[&]quot;My Interview in WorldChanging", Feb 2008, http://www.isen.com/blog/2008/02/my-interview-in-worldchanging.html

¹⁸⁸ **NITRD**, http://www.nitrd.gov/

¹⁸⁹ See footnote 148

¹⁹⁰ **DatCat, indexed Internet measurement data**, http://www.datcat.org/

[&]quot;The Devil and Packet Trace Anonymization", http://www.icir.org/enterprise-tracing/devil-ccr-jan06.

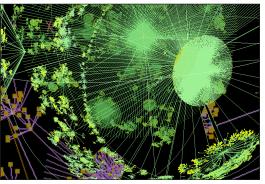
¹⁹² See footnote 48

¹⁹³ The Datapository: A collaborative network data analysis and storage facility, http://www.datapository.net/

¹⁹⁴ **Deep Internet Performance Zoom (DipZoom)**, http://dipzoom.case.edu/

^{195 &}quot;Issues and Etiquette Concerning Use of Shared Measurement Data", http://www.imconf.net/imc-2007/papers/imc80.pdf

Data Sharing and Anonymization, http://www.caida.org/data/anonymization/


¹⁹⁷ The 1st ACM Workshop on Network Data Anonymization, 2008, http://www.ics.forth.gr/~antonat/nda08.html

[&]quot;IRBs and Security Research: Myths, Facts and Mission Creep", Mar 2008, http://www.usenix.org/events/upsec08/tech/full_papers/garfinkel/garfinkel_html/

^{199 &}quot;Legal Issues Surrounding Monitoring During Network Research (Invited Paper)", http://www.imconf.net/imc-2007/papers/imc152.pdf

²⁰⁰ See footnote 8

at a cost to the social contract of privacy. The conversation over how to make these trade-offs has barely begun²⁰¹. For one, the academic community is too busy fighting lawsuits²⁰², the great-

est incentive yet for universities to not retain data on network usage. So, while academic researchers do generate²⁰³ quite a bit²⁰⁴ of intellectually meritorious²⁰⁵ work²⁰⁶, they are forced to choose scientific problems based on what data they can manage to scrape together (bottom- up) rather than picking the most important problems²⁰⁷ to study and getting the data needed to rigorously

these questions. And answering them will come study them. Recently, a group of well-respected academics have become sufficiently desperate at their inability to study, modify, and share²⁰⁸ aspects of the Internet, that they've proposed building their own sandbox209 to develop and test innovative network technologies. It's like network neutrality at the research layer, an apparently irresistible attempt to recover some objectivity²¹⁰ in the field, but in both cases symptomatic²¹¹ of the need for deeper inquiry²¹²

> F. The (predominantly libertarian) engineers in the router trenches have self-organized into squadrons of individual engineers213 and ana*lysts*²¹⁴: skilled, bright, principled people who until recently mostly believed that if they worked hard enough, they could clean up the gutters of cyberspace without government intervention. Even these groups are now finally acknowledging215 that without better support for protected data-sharing²¹⁶, partnerships with government²¹⁷, and more educated law construction and enforcement²¹⁸, even their best efforts plus the market cannot fix²¹⁹ the security problems. And although no one currently has positive expectations about

neither are we in a position to claim the current established that supporting and enforcing these lack of governance is working.

G. For the U.S. regulatory agency²²⁰ still reeling²²¹ from the damage wrought by the 1996 (U.S. Telecom) act²²² and its lifetime employment for lawyers²²³, the opaqueness of the U.S. infrastructure, even to them, keeps them in the difficult position of trying to set policy in the dark. (Ironically the FCC us the agency who should lead solutions to this problem, but as mentioned, their behavior suggests they want as little data as possible²²⁴. since they have already made up their mind²²⁵ about how to (not) regulate the Internet.)

H. Innovative software developers move away from more oppressive legal frameworks²²⁶, the net effect of which is to deprive the country of associated tax revenue and innovative climate.

I. Last but most important, the users, the youngest and most progressive of which are embracing activity²²⁷ that is arguably criminal²²⁸ under

the government doing any better anytime soon, current legal frameworks²²⁹. Although it is welllegal frameworks (a tax-funded activity whose costs are unknown) does great economic damage²³⁰ while sacrificing privacy and freedom²³¹ (not the best trade citizens have made), Hollywood insists (based on no verified data, natch), that on the contrary, it's the sharing of zero marginal cost goods that is causing the economic damage²³². While some governments admit they have no interest in tracking kids sharing music²³³, for-profit entities now forced to partner with content providers for economic reasons (since as we know by now, you can't maximize profit just moving bits around²³⁴) will find the temptation²³⁵ irresist $ible^{236}$.

> All these communities have tremendous insights into pieces of the problem, all are filled with earnest people trying to do their job, constrained by their institutional²³⁷ context²³⁸. But no one has oversight for coordination or even articulation of the global picture²³⁹. While the best available da-

²⁰² "Universities Baffled By Massive Surge In RIAA Copyright Notices", Apr 2008, http://blog.wired. com/27bstroke6/2008/04/riaa-sends-spik.html

²⁰³ ACM SIGCOMM 2008, http://conferences.sigcomm.org/sigcomm/2008/

²⁰⁴ Passive and Active Measurement Conference 2008, http://pam2008.cs.wpi.edu/

²⁰⁵ Internet Measurement Conference (IMC), http://www.imconf.net/

²⁰⁶ IEEE/ACM Transactions on Networking, http://www.ton.cs.umass.edu/

²⁰⁷ "Richard Hamming 'You and Your Research", Mar 1986, http://magic.aladdin.cs.cmu.edu/wp-uploads/hamming.pdf

Free Software Foundation, http://www.fsf.org/

²⁰⁹ Global Environment for Network Innovations, http://www.geni.net/

²¹⁰ Objectivity, Oct 2007, http://www.amazon.com/Objectivity-Lorraine-Daston/dp/1890951781/

²¹¹ "Misuing Network Neutrality to Eliminate Common Carriage Threatens Free Speech and the Postal System⁹ ', 2006, http://www.ftc.gov/os/comments/broadbandwrkshop/527031-00066.pdf

²¹² http://blog.caida.org/best_available_data/2007/09/

²¹³ Castlecops, http://www.castlecops.com/

²¹⁴ MAAW (Messaging Anti-abuse Working Group), http://www.maawg.org/about/

²¹⁵ "Law Enforcement Engagement & Incident Response Handling: NANOG Engagement", Feb 2008, http://www.nanog.org/mtg-0802/presentations/Ferguson Cyber Crime.pdf

²¹⁶ Multi-State Information Sharing and Analysis Center, http://www.msisac.org

²¹⁷ "Stopping Spam at its Source: Microsoft Partnered with Government and Law Enforcement in 003", http://www.microsoft.com/presspass/features/2004/feb04/02-10spamenforce.mspx

²¹⁸ NANOG mailing list: "Re: handling ddos attacks", May 2004, http://www.irbs.net/internet/ nanog/0405/0521.html

[&]quot;Information Security Economics - and Beyond", 2008, http://www.cl.cam.ac.uk/~rja14/Papers/econ_ 219 czech.pdf

²²⁰ http://www.fcc.gov/

²²¹ http://www.fcc.gov/telecom.html

²²² http://www.ntia.doc.gov/top/publicationmedia/newsltr/telcom_act.htm

²²³ "Untangling the Next Telecom Act", Mar 2006, http://www.inthesetimes.com/article/2524/

²²⁴ "FCC chief backs AT&T bid to waive cost data", Apr 2008, http://www.reuters.com/article/governmentFilingsNews/idUSN2433101820080424?feedType=RSS&feedName=governmentFilingsNews&rpc=408

²²⁵ Written statement of Kevin J. Martin before the U.S. Senate Committee on Commerce, Science and Transportation, Apr 2008, http://hraunfoss.fcc.gov/edocs/public/attachmatch/DOC-281690A1.pdf

²²⁶ Testimony of Sam Yagan, Sep 2005, http://judiciary.senate.gov/testimony.cfm?id=1624&wit_id=4689 227 "Japanese File-Sharing Population Explodes", Dec 2007, http://torrentfreak.com/japanese-file-sharing-population-explodes-071221/

²²⁸ "95% of Kids Aged 18-24 Are Pirating Music", 2008, http://gizmodo.com/377067/95-of-kids-aged-18+24-are-pirating-music

²²⁹ http://www.questioncopyright.org/

²³⁰ "What's Wrong With Copy Protection", Feb 2001, http://www.toad.com/gnu/whatswrong.html

Digital Freedom, http://digitalfreedom.org/utilities/2008/01/piracy-not-just-for-public-any-more.html

²³² "The True Cost of Motion Picture Piracy to the U.S. Economy", Sep 2006, http://www.ipi.org/ ipi%5CIPIPublications.nsf/PublicationLookupExecutiveSummary/A6EB1EAC4310AF6F862571F7007CB6AF "Anti file-sharing laws considered", Oct 2007, http://news.bbc.co.uk/2/hi/technology/7059881.stm

[&]quot;Broadweave to heal iProvo by shedding wholesale fiber model", May 2008, http://telephonyonline. com/fttp/news/broadweave-iprovo-wholesale-0507/

[&]quot;AT&T and Other I.S.P.'s May Be Getting Ready to Filter", Jan 2008, http://bits.blogs.nytimes. com/2008/01/08/att-and-other-isps-may-be-getting-ready-to-filter/index.html

²³⁶ "AT&T Pushes Internet Piracy Filters At CES", Jan 2008, http://www.dslreports.com/shownews/ ATT-Pushes-Internet-Piracy-Filters-At-CES-90827

²³⁷ See footnote 101

Supercapitalism: The Transformation of Business, Democracy, and Everyday Life, Sep 2008, 238 http://www.amazon.com/Supercapitalism-Transformation-Business-Democracy-Everyday/dp/0307277992/

[&]quot;Why States Need an International Law for Information Operations", Jan 2008, http://papers.ssrn. com/sol3/papers.cfm?abstract id=1083889

ta makes it obvious that legal repair and renewal is crucial to democracy — communications technology being no exception — we are currently pursuing enlightened policy in the dark. Which begs the question: what is the most important ingredient to enlightened policy?

"Such is the irresistible nature of truth that all it asks, and all it wants, is the liberty of appearing." Thomas Paine (1737 - 1809)

point nine

IX. The news is not all bad: there is a reason everyone wants to be connected to all the world's knowledge — as well as each other — besides its status as the most powerful complex system ever created by man. The Internet's practical promise²⁴⁰ for individual freedom, democratic engagement, and economic empowerment, is also unparalleled. This promise is sufficient inspiration for an open, technically literate conversation about how to invest in technologies and policies to support articulated social objectives.

A. David Clark's conclusion that the federally

funded network research community's "real accomplishment was not in computing but in connecting people²⁴¹" captures a century of thought. Although the openness of the architecture is the root of its many vulnerabilities, it was also the aspect that allowed enough self-organizing momentum to grow the network as fast as it did²⁴². The results are noisy²⁴³, the journey messy²⁴⁴, the future uncertain²⁴⁵, the most pessimistic scenarios²⁴⁶ ominous. But the positive effects are also incalculable, particularly the potential for an unprecedented increase in individual freedom²⁴⁷, the often de-emphasized, yet primary, social objective of both democracy and markets.

B. The *p2p file-sharing*²⁴⁸ phenomenon, and more recently the *user-generated video sharing*²⁴⁹ phenomenon, are finally shedding some light on the inconvenient truth: we have not yet demonstrated a sustainable competitive model for moving raw bits around. Not that we excel at competitive models for moving things around over large distances to almost anywhere. Witness railroads, water, electricity, highways, postal service, telephony. Soon, airlines. The economics clearly need some *sunlight*²⁵⁰. And the *p2p*²⁵¹ *debate*²⁵² *will*²⁵³ *require*²⁵⁴ *some*²⁵⁵.

C. As with most infrastructure issues, the U.S. federal government is slow to respond²⁵⁶ regarding a national broadband strategy²⁵⁷. But the USG is investing resources and regulatory attention in the to help foster global Internet growth, including: encouraging IPv6 deployment²⁵⁸ to mitigate the coming address space crunch; improving²⁵⁹ the security of the naming system²⁶⁰ with community-developed standards²⁶¹ for authenticated DNS262 responses; and, in partnership with industry and academia, developing a roadmap²⁶³ for federal research and development in cybersecurity and information assurance. (Yes, the emphasis is on security and sustainability issues, but that's where federal investment is today.)

D. With infrastructure, progressive movement tends to begin at the state and *local*²⁶⁴ levels as *governments*²⁶⁵ *experiment with*²⁶⁶ *alternative*²⁶⁷ *ownership models*²⁶⁸ for provisioning Internet

infrastructure via public-private partnerships. Local experimentation is critical, and eye-opening: after a decade of pay-per-minute hotspots, airports are realizing that free (as in beer) *wift access*²⁶⁹ appeals to visitors and residents.

E. The OECD now considers the Internet *relevant to its mission*²⁷⁰, and is issuing balanced recommendations based on its best available data, which they forcefully admit is problematic. In their recent *ministerial meeting*²⁷¹ on the future of the Internet, they committed to "improving statistical indicators to measure access and use of the Internet..in order to provide more reliable data and analysis." Only in the U.S. do policy makers *believe that OECD rankings are lying*²⁷².

F. There are many *educated*²⁷³ people speaking out on the topic of *informing policy based on what we know*²⁷⁴, and *reserving judgment*²⁷⁵ else-

T. T. T. T. O. 1912

The Wealth of Networks: How Social Production Transforms Markets and Freedom, Oct 2007, http://www.amazon.com/Wealth-Networks-Production-Transforms-Markets/dp/0300125771/

²⁴¹ **Proceedings of the Twenty-Fourth Internet Engineering Task Force, Jul 1992**, http://www3.ietf. org/proceedings/prior29/IETF24.pdf

²⁴² **Internet growth**, http://www.nic.funet.fi/index/FUNET/history/internet/en/kasvu.html#nimet

²⁴³ **"A Look At The Unidentified Half of Netflow", Jan 2008**, http://www.uoregon.edu/~joe/missing-half/missing-half.pdf

Histories of the Internet, http://www.isoc.org/internet/history/

The Future of the Internet: Q&A with K. Claffy, http://blog.caida.org/best_available_data/2007/07/

²⁴⁶ See footnote 117

^{247 &}quot;Property, Commons, and the First Amendment: Towards a Core Common Infrastructure", Mar 2001, http://www.benkler.org/WhitePaper.pdf

²⁴⁸ http://en.wikipedia.org/wiki/P2P_file_sharing

²⁴⁹ http://en.wikipedia.org/wiki/List_of_video_sharing_websites

^{250 &}quot;The Internet as emerging critical infrastructure: what needs to be measured?", Sep 2007, http://www.caida.org/publications/presentations/2007/critimeas2007-09/

^{251 &}quot;Cisco: P2P Flat in North America? Some Experiencing Major Growth", Jul 2008, http://www.circleid.com/posts/86201_cisco_p2p_flat_in_north_america/

^{252 &}quot;Sandvine: close to half of all bandwidth sucked up by P2P", Jun 2008, http://arstechnica.com/news.ars/post/20080623-sandvine-close-to-half-of-all-bandwidth-sucked-up-by-p2p.html

²⁵³ See footnote 233

[&]quot;The Effect of File Sharing on Record Sales: An Empirical Analysis", Dec 2006, http://www.unc.edu/~cigar/papers/JPE%2031618%20FileSharing%202006-12-12.pdf

^{255 &}quot;Challenges and Directions for Monitoring P2P File Sharing Networks or Why My Printer Received a DMCA Takedown Notice", Aug 2001, http://dmca.cs.washington.edu/uwcse_dmca_tr.pdf

^{256 &}quot;Whatever happened to the Bush broadband policy?", http://isen.com/blog/2005/05/whatever-happened-to-bush-broadband.html

²⁵⁷ See footnote 131

²⁵⁸ See foonote 20

²⁵⁹ **DNSSEC (Domain Name System Security Extensions) Deployment Initiative**, http://en.wikipedia.org/wiki/DNSSEC#DNSSEC_Deployment_Initiative

DNS security, http://www.cybertelecom.org/dns/security.htm

DNS Security Introduction and Requirements, http://www.ietf.org/rfc/rfc4033.txt

²⁶² http://en.wikipedia.org/wiki/DNSSEC

²⁶³ **Cyber Security and Information Assurance (CSIA)**, http://www.nitrd.gov/pubs/2008supplement/08-Supp-Web/TOC%20Pages/08supp-CSIA.pdf

^{264 &}quot;ConnectKentucky's incumbent-centric model cannot meet US broadband needs", http://www.muniwireless.com/

Telecommunications network for Burlington, http://www.burlingtontelecom.com/

²⁶⁶ **"Philadelphia revives citywide Wi-Fi project"**, **Jun 2008**, http://www.reuters.com/article/technologyNews/idUSN1737601520080617

More about the report and analysis of the Philadelphia Wireless project, http://www.saschamein-rath.com/2008/mar/12/more_thoughts_philly_three_months_after_philadelphia_story

^{268 &}quot;City Takes Back Wi-Fi Net It Sold to EarthLink", Apr 2008, http://www.nytimes.com/idg/IDG_85 2573C4006938800025742E006429B9.html?ref=t

²⁶⁹ Guide to WiFi in airports world-wide, http://www.jaunted.com/maps/Airport-WiFi-Map

OECD proposes roadmap for the future of the Internet economy, Jun 2008, http://www.oecd.org/document/18/0,3343,en_2649_37441_40862162_1_1_1_1,00.html

²⁷¹ **OECD Ministerial Meeting on the Future of Internet Economy, Jun 2008**, http://www.oecd.org/site/0,3407,en_21571361_38415463_1_1_1_1_1_0.0.html

^{272 &}quot;The UK Broadband Infrastructure And the Debate We Should Be Having", Jun 2008, http://www.wetmachine.com/item/1228

^{273 &}quot;The Key Questions About the New FISA Bill", Jun 2008, http://balkin.blogspot.com/2008/06/key-questions-about-new-fisa-bill.html

^{274 &}quot;Follow Up On Medical Devices: Smarter Devices And Smarter Policy, Not More Bandwidth", Apr 2008, http://www.wetmachine.com/item/1172

^{275 &}quot;Reserving Judgment on Sprint/Clearwire/Google/Intel/ForcesofDarkness Deal", May 2008, http://www.wetmachine.com//item/1180

where. (Recommended thinkers²⁷⁶.) There are ers, led by²⁸⁸ U.S. federal agency ARPA, supevolutionary lessons and insights²⁷⁷ to glean from other networked fields facing similar problems, e.g., semantic web in big pharma²⁷⁸ and efficient routing²⁷⁹ as well as lessons to draw from ideas we have tried that have not worked yet, such as public catalogs²⁸⁰ or open commerce in network *data*²⁸¹. There's plenty of work to do, but there's no shortage of qualified people.

G. Authors and journalists have *captured*²⁸² and interpreted history²⁸³, and academic researchers have done their share of capturing²⁸⁴ and interpreting²⁸⁵ the history of communications²⁸⁶ and its implications for the Internet. There is detailed understanding of the history of many aspects of the Internet, including how pieces of the coevolving complex systems²⁸⁷ of technology, economics, and regulation fit together.

H. Relatively few government-funded research-

ported by strong regulatory protection for innovation²⁸⁹built the Internet in an amazingly short time relative to the history of communications. Within twenty years the new ecosystem fatally threatened²⁹⁰ the old. The obvious response by the incumbent carriers was to manipulate the regulatory architecture away from the line-sharing that made innovations such as the Internet possible. No surprise there, these same carriers 291 fought²⁹² innovation²⁹³ last²⁹⁴ century²⁹⁵ too, including the Internet²⁹⁶. Regulating protection of innovation at the edge is neither new nor somehow obviated by the technological developments of the Internet. On the contrary, the technological ability to innovate at the edge of the Internet is easy to remove in the middle by a network owner. So as with the rest of history of telecom, and as with other social goals such as universal access, it will largely be a matter of pointing legislatures to results achieved²⁹⁷ from

276 http://blog.caida.org/best available data/recommended-feeds/

Evolution of Networks: From Biological Nets to the Internet and WWW, Mar 2003, http://www. .com/Evolution-Networks-Biological-Internet-Physics/dp/0198515901/ amazon

"Pharma Researchers Adopt An Orphan Internet Standard", Oct 2007, http://pubs.acs.org/email/ cen/html/100807150541.html

279 "Navigability of Complex Networks", Sep 2007, http://arxiv.org/abs/0709.0303

280 See footnote 190

281 See footnote 194

282 Where Wizards Stay Up Late: The Origins Of The Internet, Jan 1998, http://www.amazon.com/ Where-Wizards-Stay-Up-Late/dp/0684832674/

What the Dormouse Said: How the Sixties Counterculture Shaped the Personal Computer Indus-283 try, Feb 2006, http://www.amazon.com/What-Dormouse-Said-Counterculture-Personal/dp/0143036769/ 284

Internet history archive, http://internethistoryarchive.org/

"Licensing in the Web 2.0 Era", Jul 2007, http://itc.conversationsnetwork.org/shows/detail3365.html

286 "The history of communications and its implications for the Internet", Jun 2000, http://www.dtc. umn.edu/~odlyzko/doc/history.communications0.pdf

"The Telecommunications Economy and Regulation As Coevolving Complex Adaptive Systems: Implications for Federalism", http://quello.msu.edu/complexity/CherryTPRC04.pdf

288 J.C.R. Licklider, http://en.wikipedia.org/wiki/Licklider 289

Computer Inquiries, http://www.cybertelecom.org/ci/

290 "Economist: How The Internet Killed the Phone Business", Sep 2005, http://techliberation.

com/2005/09/28/economist-how-the-internet-killed-the-phone-business/

291 History of AT&T, http://www.cybertelecom.org/notes/att.htm

292 Customer Premises Equipment Part 68, http://www.cybertelecom.org/ci/cpe.htm

293 Hush-a-phone case, http://www.cybertelecom.org/library/hushaphone.htm

294 Carterfone case, http://www.cybertelecom.org/library/carterfone.htm

295 AT&T AntiTrust Suit III: Bell Operating Companies, http://www.cybertelecom.org/notes/att_antitrust.htm#div

296 See footnote 289

297 OECD Broadband Portal, http://www.oecd.org/document/54/0,3343,en_2649_34225_38690102_1_1 1 1,00.html

other policies²⁹⁸.

"But, important as these problems are, they were not the main point. The main point of the book is to see these human constructions as systems, not as collections of individuals or representatives of ideologies. From our opening accident with the coffeepot and job interview through the exotics of space, weapons, and microbiology, the theme has been that it is the way the parts fit together, interact, that is important. The dangerous accidents liein the system, not in the components. The nature of the transformation process eludes the capacities of any human system we can tolerate in the case of nuclear power and weapons; the air transport system works well — diverse interests and technological changes support one another; we may worry much about the DNA system with its unregulated reward structure, less about chemical plants; and though the processes are less difficult and dangerous in mining and marine transport, we find the system of each is an unfortunate concatenation of diverse interests at cross-purposes. These systems are human constructions, whether designed by engineers and corporate presidents, or the result of unplanned, unwitting, crescive, slowly evolving human attempts to cope. Either way they are very resistant to change. Private privileges and profits make the planned constructions resistant to change; layers upon layers of accommodations and bargains that go by the name of tradition make the unplanned ones unyielding. But they are human constructions, and humans can destruct them or reconstruct them. The catastrophes send us warning signals. This book has attempted to decode

these signals: abandon this, it is beyond your capabilities; redesign this, regardless of short-run costs; regulate this, regardless of the imperfections of regulation. But like the operators of TMI (three-mile island) who could not conceive of the worst — and thus could not see the disasters facing them — we have misread these signals too often, reinterpreting them to fit our preconceptions. Better training alone will not solve the problem, or promise that it won't happen again. Worse yet, we may accept the preconception that military superiority and private profits are worth the risks. This book's decoding asserts that the problems are not with individual motives, individual errors, or even political ideologies. The signals come from systems, technological, and economic. They are systems that elites have constructed, and thus can be changed or abandoned."

-Normal Accidents, Charles Perrow, 1999

point ten

X. Moreover, even in the dim light of the under-attended interdisciplinary research into the network, the available data implies clear directions for solutions, all of which cross policy-technology boundaries.

A. We can learn from our mistakes. The false assumption that competing members of a profitmaximizing ecosystem will cooperate toward architectural innovations not in their short-term interest is remarkably consistent across failed attempts to solve²⁹⁹ major problems of the Internet³⁰⁰ (e.g., ATM³⁰¹, multicast³⁰², routing secu-

300 See footnote 62

²⁹⁸ "Explaining International Broadband Leadership", May 2008, http://www.itif.org/index. php?id=142

²⁹⁹ IAB Concerns and Recommendations Regarding Internet Research and Evolution, Aug 2004, http://www.ietf.org/rfc/rfc3869.txt

³⁰¹ http://en.wikipedia.org/wiki/Asynchronous_Transfer_Mode#Successes_and_failures_of_ATM_technology

³⁰² http://en.wikipedia.org/wiki/IP_Multicast#History_and_milestones

 $rity^{303}$, $IPv6^{304}$, $DNSSEC^{305}$, OOS^{306}). Engineers have made valiant efforts to provide architectural solutions to security and scalability problems, providing vivid illustrations of how the computational thinking³⁰⁷ approach, embracing modularization and separation of issues, can fail to account for how tightly linked the technology, economic, and social dimensions of the problems are. As the Internet becomes the substrate underlying our professional, personal and political lives, we must recognize the links within and across its four biggest problems:

(1) the fundamentally insecure³⁰⁸ software³⁰⁹ ecosystem³¹⁰, (2) the³¹¹ fundamentally³¹² unscalable³¹³ routing³¹⁴ and addressing architecture³¹⁵, (3) the fundamentally³¹⁶ unsustainable³¹⁷ economic³¹⁸ architecture³¹⁹, and (4) a stewardship³²⁰ model broken³²¹ along so many dimensions³²²

that *solving*³²³, or even *studying*³²⁴, the first three problems³²⁵ is no one's responsibility. Expecting he private sector to navigate these dimensions (security, scalability, sustainability, and stewardship) while subject to relentless pressure to minimize costs is a recipe for failure; even public-private partnerships are not free of 26 these pressures³²⁷. Furthermore, since all four dimensions transcend the jurisdiction of any sovereign government, we also cannot expect any solution that emphasizes national boundaries.

B. While competing in the middle prohibits architectural innovation, cooperating at the edge Wikipedia, Ebay, the blogosphere and other

seems to be a common ingredient of the most successful innovations on the Internet, including the web and search engines, VOIP, Linux,

303 A Survey of BGP Security Issues and Solutions, http://www.cs.purdue.edu/homes/ninghui/readings/ TruSe_fall04/td-5ugj33.pdf

Technical and Economic Assessment of Internet Protocol Version 6 (IPv6), http://www.ntia.doc.gov/ ntiahome/ntiageneral/ipv6/draft/draftchap4.htm

305 See footnote 31

306 Considerations of Provider-to-Provider Agreements for Internet-Scale Quality of Service (QOS), Mar 2008, http://www.ietf.org/rfc/rfc5160.txt

Computational Thinking, Mar 2004, http://www.cs.cmu.edu/afs/cs/usr/wing/www/publications/ Wing06.pdf

308 Online Identity Theft, Jun 2008, http://www.oecd.org/document/59/0,3343,en_2649_34223_40830139 1,00.html?rssChId=34223

Economics Malware: Security Decisions, Incentives and Externalities, May 2008, http://www.oecd. org/dataoecd/53/17/40722462.pdf

310 Daily Submission Volume, Aug 2008, http://isc.sans.org/submissions.html

311 http://www.wireless-safety.org/

312 "Scalability of Routing: Compactness and Dynamics", http://www.ietf.org/proceedings/06nov/slides/ RRG-3.pdf

313 See footnote 89

314 "Damping BGP", Jun 2007, http://www.potaroo.net/ispcol/2007-06/dampbgp.html

315 "Report from the IAB Workshop on Routing and Addressing", Sep 2007, http://www.ietf.org/rfc/ rfc4984.txt

316 "Broadband pricing: solutions that are orthogonal to any real problem", Jun 2008, http://www. networkworld.com/columnists/2008/061708-bradner.html?fsrc=rss-bradner

317 See footnote 181

318 "The (un)Economic Internet", http://www.caida.org/publications/papers/2007/ieeecon/

319 "\$200 Billion Broadband Scandal", http://www.newnetworks.com/broadbandscandals.htm

320 See footnote 39

321 ICANN - The Case for Reform, Feb 2002, http://www.icann.org/en/general/lynn-reform-proposal-24feb02.htm

322 The Broadband Problem: Anatomy of a Market Failure and a Policy Dilemma, Jun 2004, http:// nazon.com/Broadband-Problem-Anatomy-Failure-Dilemma/dp/0815706448/

323 See footnote 160

324 See footnote 62

325 IPv4 Census Map, http://www.caida.org/research/id-consumption/census-map/

326 "Connected Nation's Private Interests Hit In FCC Comments", Jul 2008, http://www.publicknowledge.org/node/1675

327 http://www.muniwireless.com/2008/01/17/the-connectkentucky-model-a-limited-step-in-the-right-direction/

social networks. Ubiquitous connectivity is transforming economic conditions, supporting collaborations among individuals that achieve more efficient³²⁸ means of production and consumption than either government programs or competitive markets have achieved. This transformation leaves some incongruity about *current*

economic architecture³²⁹ for the Internet, which has a deeply embedded preference for markets³³⁰ and private sector control331 of communications infrastructure³³² as well as information³³³. The extremely dynamic and unpredictable structure, usage, and growth of the Internet does not reduce the necessity of regulation334 to well-functioning markets; on the contrary, its elusive

nature is what makes transparent³³⁵ and accountable³³⁶ experimentation³³⁷ so necessary.

C. What we believe about the infrastructure influences our technology and policy decisions. The current barriers to data access leave us without any mechanism to verify claims or weed

> out false beliefs about the infrastructure, including the increasing suspicion that the majority of Internet traffic represents illegal activity. Copyright infringement, only one example, may be so rampant as to be economically unviable to pre vent, but without an objective 338 look at how the network is used, we are subject to vain attempts to criminalize typical network³³⁹ usage rather than updating the laws to accomplish their intended purpose340 in

light of technological developments. Ironically, traffic measurement undertaken by law enforcement for national seurity purposes341 and attempted342 by scientific researchers343 is also arguably illegal344 under current anachronistic legislation. Again, our choice is to cripple socially important goals — law enforcement and scientific Internet research³⁴⁵ — or update³⁴⁶ the

³²⁸ "Sharing Nicely", 2004, http://benkler.org/SharingNicely.html

³²⁹ http://blog.caida.org/best_available_data/2007/10/07/internet-infrastructure-economics-top-ten-things-ihave-learned-so-far/

³³⁰ "Let There Be Markets: The Evangelical Roots of Economics", May 2005, http://www.mindfully.org/ Industry/2005/Evangelical-Economics1may05.htm

³³¹ Administration NII Accomplishments, http://www.ibiblio.org/nii/NII-Accomplishments.html

³³² "The 700 MHz Auction as the Next Front In the Cable/Telco War", May 2007, http://www.wetmachine.com/totsf/item/789

³³³ Intellectual Property and the National Information Infrastructure, http://www.uspto.gov/web/offices/com/doc/ipnii/

Understanding Regulation: Theory, Strategy, and Practice, Jul 1999, http://www.amazon.com/Un-334 derstanding-Regulation-Theory-Strategy-Practice/dp/0198774389/

³³⁵ Sunlight Foundation, http://www.sunlightfoundation.com/

[&]quot;Harnessing Conflict and Competitiveness for Society's Benefit", Aug 2000, http://www.davidbrin. 336 com/disputationarticle1.html

³³⁷ GNU General Public License, Jun 2007, http://www.fsf.org/licensing/licenses/gpl.html

³³⁸ See footnote 210

³³⁹ http://www.eff.org/riaa-v-people

³⁴⁰ See footnote 229

³⁴¹ U.S. Code Collection: Chapter 36-Foreign Intelligence Surveillance, Aug 2008, http://www.law.cornell.edu/uscode/html/uscode50/usc sup 01 50 10 36.html

http://blog.caida.org/best_available_data/2007/08/26/what-we-cant-measure-on-the-internet-reprisal/ 342

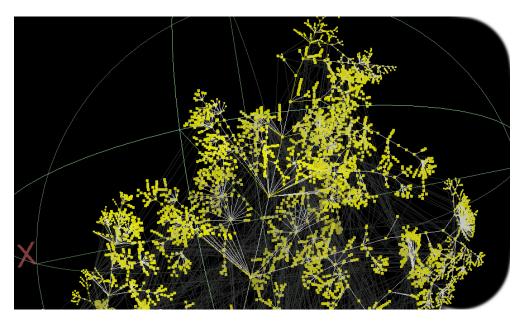
^{343, 344} See footnote 199

³⁴⁵ "Why We Don't Know How To Simulate The Internet", Dec 1997, ftp://ftp.ee.lbl.gov/papers/wsc97.

³⁴⁶ See footnote 8

 PA^{350}) legislation.

D. Public investment in knowledge production, including science and medical research, gains enormously from universal connectivity, offering distribution of resulting products to all taxpayers at zero marginal cost. The same reasoning reduces the justification for strong intellectual property systems, since they require expensive technology to prevent networks from doing what networks do naturally: share data. It is thus in interest of taxpayers for governments to promote and sometimes directly fund³⁵¹ uni-More generally, government needs to prevent monopoly control over essential resources352, mandate collection of traffic reports from ISPs³⁵³ to validate their claims, be a better role model for operational security, and coordinate the development of a road map for Internet security similar to that of the energy sector³⁵⁴ (DHS is working on this last one).


relevant³⁴⁷ communications³⁴⁸ privacy³⁴⁹ (EC- E. Scientific researchers are in a difficult position, trying to do science without data355, butthey are in a position to make progress, with the help of a few good legal experts. They (we) could propose a list of the most important Internet research questions/problems to investigate, such as the ongoing discrepancies356 between supposedly scientific studies³⁵⁷, and suggest what data is needed to investigate them. The academic community could even use existing assets³⁵⁸ such as their own under-utilized backbone³⁵⁹ to mitigate the data dearth, by incenting measurement data out of cooperating networks in exchange for network bandwidth. In the process they could versal deployment of network infrastructure. help local communities experiment with and measure performance, cost, and efficiency of alternative network ownership models. Internet2 should also work with researchers and their institutional review boards360 (IRBs) at member universities to assist researchers in developing privacy-respecting³⁶¹ network analysis technologies and data handling policies, so that the

organization can share more data from its research backbone with scientific researchers.

F. The FCC is not exempt from the facts either - the agency should be pursuing empirically grounded validation³⁶² of the claimed efficiency of its own policies, even if it requires trading temporary spectrum unlicensing364 as an experiment to gather realistic baseline data on wireless network behavior to policy makers. The academic community could even help design such a network, geared toward public safety objectives

and supporting scientific research balanced carefully against individual privacy. Such a trade seems less extreme an idea in light of the failure of the D-block auction, and the FCC admission that economic conditions make it a bad time to try to auction it now365. Reforming our policy for this spectrum could achieve efficiency³⁶⁶, access³⁶⁷, public safety, and network science objectives at least cost to taxpayers.

"We can have facts without thinking but we cannot have thinking without facts." — John Dewey

³⁴⁷ U.S. Code Collection: 2511. Interception and disclosure of wire, oral, or electronic communications prohibited, Aug 2008, http://www.law.cornell.edu/uscode/html/uscode18/usc_sec_18_00002511----000-. html

³⁴⁸ U.S. Code Collection: Unlawful access to stored communications, Aug 2008, http://www.law.cornell.edu/uscode/html/uscode18/usc_sec_18_00002701----000-.html

[&]quot;Privacy Act II", Jul 2008, http://www.fcw.com/online/news/153289-1.html

³⁵⁰ Electronic Communications Privacy Act, http://en.wikipedia.org/wiki/ECPA

³⁵¹ Opportunities for Rural America, http://wireless.fcc.gov/outreach/index. htm?job=broadband_home

The Essential Facilities Doctrine In The Deregulated Telecommunications Industry, 1998, http:// www.law.berkeley.edu/journals/btlj/articles/vol13/Soma/html/reader.html

Internet 3.0: Identifying Problems and Solutions to the Network Neutrality Debate, Jun 2007, http://ijoc.org/ojs/index.php/ijoc/article/download/160/86

³⁵⁴ Roadmap to Secure Control Systems in the Energy Sector, January 2006, http://www.controlsystemsroadmap.net/

See footnote 342

³⁵⁶ Internet2 and Quality of Service: Research, Experience, and Conclusions, May 2006, https://www. educause.edu/ir/library/pdf/CSD4577.pdf

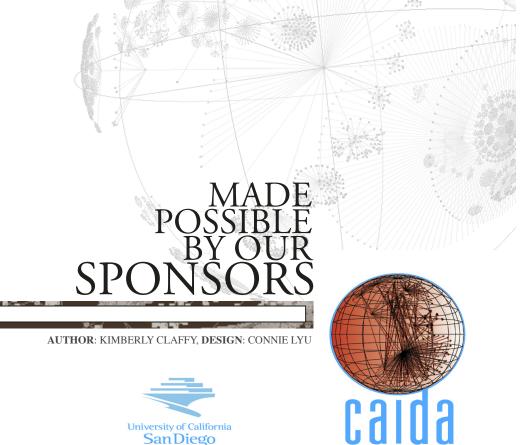
³⁵⁷ See point five

³⁵⁸ High-speed academic networks and the future of the Internet, May 2008, http://arstechnica.com/ articles/culture/future-internet.ars

³⁵⁹ http://www.internet2.edu/

[&]quot;IRBs and Security Research: Myths, Facts and Mission Creep", Mar 2008, http://www.usenix. org/events/upsec08/tech/full_papers/garfinkel/garfinkel_html/

¹st ACM Workshop on Network Data Anonymization, 2008, http://www.ics.forth.gr/~antonat/ 361 nda08.html


³⁶² 1st ACM Workshop on Network Data Anonymization, 2008, http://www.ics.forth.gr/~antonat/nda08. html

³⁶³ How To Give America Wireless Broadband For Christmas 2009 - the Lesson from 3.65 GHz Deployment, Jan 2008, http://www.wetmachine.com/item/1029

[&]quot;FCC chief says economy could hurt wireless sale", Jan 2008, http://www.reuters.com/article/technologyNews/idUSN1555479420080115

[&]quot;Gaping Hole in Models for Using Spectrum Efficiently", Mar 2008, http://www.circleid.com/ posts/832812_models_wireless_spectrum/

Report: US must have universal gigabit broadband by 2015, Jun 2008, http://arstechnica.com/ news.ars/post/20080624-report-us-must-have-universal-gigabit-broadband-by-2015.html

This pamphlet was produced as part of the COMMONS, a CAIDA and Cisco collaborative project, to simultaneously solve three acute and growing problems facing the Internet: a selfreported financial crisis in the Internet infrastructure provider industry; a data acquisition crisis which has severely stunted the field of network science; and a struggle for survival within emerging community and municipal networks.

> COOPERATIVE ASSOCIATION FOR INTERNET DATA ANALYSIS SAN DIEGO SUPERCOMPUTER CENTER. UNIVERSITY OF SAN DIEGO 500 GILMAN DRIVE, MC0505. LA JOLLA, CA 92093-0505. 858-534-5000. http://www.caida.org/