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Abstract—We propose an agent-based network formation
model for the Internet at the Autonomous System (AS) level.
The proposed model, called GENESIS, is based on realistic
provider and peering strategies, with ASes acting in a myopic and
decentralized manner to optimize a cost-related fitness function.
GENESIS captures key factors that affect the network formation
dynamics: highly skewed traffic matrix, policy-based routing, ge-
ographic co-location constraints, and the costs of transit/peering
agreements. As opposed to analytical game-theoretic models,
which focus on proving the existence of equilibria, GENESIS
is a computational model that simulates the network formation
process and allows us to actually compute distinct equilibria (i.e.,
networks) and to also examine the behavior of sample paths
that do not converge. We find that such oscillatory sample paths
occur in about 10% of the runs, and they always involve tier-
1 ASes, resembling the tier-1 peering disputes often seen in
practice. GENESIS results in many distinct equilibria that are
highly sensitive to initial conditions and the order in which ASes
(agents) act. This implies that we cannot predict the properties of
an individual AS in the Internet. However, certain properties of
the global network or of certain classes of ASes are predictable.
We also examine whether the underlying game is zero-sum, and
identify three sufficient conditions for that property. Finally,
we apply GENESIS in a specific “what-if” question, asking
how the openness towards peering affects the resulting network
in terms of topology, traffic flow and economics. Interestingly,
we find that the peering openness that maximizes the fitness
of different network classes (tier-1, tier-2 and tier-3 providers)
closely matches that seen in real-world peering policies.

I. INTRODUCTION

Tens of thousands of Autonomous Systems (ASes) intercon-
nect in a complex and dynamic manner to form the Internet.
These ASes belong to different categories e.g. enterprise
networks, content sources, access providers, transit providers,
or various combinations of the aforementioned categories.
Additionally, they differ in geographic size (“expanse”) and
economic parameters (e.g., transit prices). ASes connect with
one another mostly through two types of relations: customer-
provider (or “transit”) links and settlement-free peering links.
Most interactions between ASes are local (unilateral in the
case of provider selection and bilateral in the case of peering),
decentralized and dynamic. These local connectivity decisions,
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however, can have a global impact on the economic viability
of all ASes and the structure of the Internet.

The Internet remains in a persistent state of flux subject to
changes in various exogenous factors. How will the Internet
change due to consolidation of content [1], large penetra-
tion of video streaming, falling transit prices [2], expanding
geographic footprint of content providers [3], cheap local
availability of peering infrastructure at IXPs [4]? We propose
a computational agent-based network formation model, called
“GENESIS”, as a tool to study such questions. GENESIS is
modular and easily extensible, allowing researchers to exper-
iment with different peering or provider selection strategies,
traffic matrix characteristics, routing policies, cost parameters,
etc.

In this paper, we first introduce the main features of GEN-
ESIS and then use simple yet realistic provider selection and
peering strategies, as proof-of-concept, to study the properties
of the resulting networks. Starting from a population of ASes
and initial topology, the model executes an iterative process
in which each AS acts asynchronously to optimize its set of
provider and peering links. We focus on the dynamic behavior
of the model, identify the cause of some oscillatory sample
paths (about 10% of the runs), and analyze the variability of
the resulting equilibria. We show that under certain conditions
about transit and peering costs, the set of transit providers
engage in an (approximately) zero-sum game. We finally
apply GENESIS in a specific “what-if” question, examining
the impact of a parameter, related to the openness of transit
providers towards peering, on the topology, traffic flow, and
economics of the resulting network.

II. RELATED WORK

Most of the previous related work has focused on charac-
terizing and modeling the AS-level Internet topology. Various
graph theoretic models aim to reproduce observed Internet
topological properties (e.g., power-law degree distribution
[5]) [6], [7], [8]. Another class of models take a bottom-
up approach [9], modeling the optimization objectives and
constraints of individual ASes, to create graphs that have the
same topological properties [9], [10], [11], [12]. GENESIS is
different than that line of research because it does not aim
to be a topology generation model or tool; instead, it captures



interdomain traffic flow, geographic constraints and economics
to model the network formation process.

A large body of work on game-theoretic network forma-
tion models exists in the computer science and economics
literature. We refer the interested reader to two recent books
[13], [14]. Those models capture the objectives and potential
strategies of each node, as players in a non-cooperative game,
and they focus on proving the existence of (typically many)
equilibria. The need for mathematical tractability, however,
requires significant simplifications (such as lack of geographic
constraints, simple cost functions, or uniform traffic flow
between nodes. Consequently, the resulting networks are typ-
ically simple graphs, such as rings, trees or other regular
structures. We avoid such simplifications in GENESIS. Ad-
ditionally, few approaches in that line of work have focused
on the dynamics of the network formation process and on the
selection between multiple possible equilibria.

Our work is most related to agent-based computational
models that simulate the dynamics of the network formation
process, capturing the asynchronous and decentralized process
through which nodes adjust their connectivity. The model by
Holme et al. [15] is similar to GENESIS but it does not
include peering and realistic routing. The model of Chang
et al. [16] uses hard-wired strategies for provider and peer
selection, among other differences. The model of Dhamdhere
et al. [17] is more similar to GENESIS but it assigns a specific
function to each node (e.g., content provider) and it focuses
on the differences between two Internet instances (hierarchical
versus “flat”).

III. MODEL DESCRIPTION

We consider a population of N nodes (representing Au-
tonomous Systems) which interconnect through two types
of links: customer-provider and peering. Each node has the
following attributes: a set of locations in which it is present,
an amount of traffic it sends to and receives from every other
node, and certain economic parameters, such as the transit
price it would charge to its potential customers at a given
location. We do not assign an a priori business function to
nodes; a node may end up acting as tier-1 transit provider
in one equilibrium and as a content provider in another. We
next describe each component of GENESIS in more detail. A
complete description of the model, with a longer justification,
is available at a technical report [18]. The source code for
the simulator that executes GENESIS is available at the same
URL.

Geographical presence: There are GM locations, and a
node x is present at a set G(x) of locations. These locations are
roughly analogous to Internet Exchange Points (IXPs). Two
nodes overlap if they share at least one location. For node x,
O(x) denotes the set of networks that overlap with x. A link
between two nodes can be formed if they overlap.

Traffic matrix and transit traffic: The element Txy of the
N-by-N interdomain traffic matrix T denotes the average traffic
volume generated by node x and consumed by node y. Overall,
x generates traffic VG(x) and consumes VC(x). Txx=0, i.e., we

do not capture the local traffic within a network. The transit
traffic VT (x) of x is the traffic volume that is neither generated
nor consumed by x – it only passes through x enroute to
its destination. The transit traffic of a node depends on the
underlying network topology and the routing algorithm. Even
if the interdomain traffic matrix T is constant, the transit traffic
of a node may change as the underlying topology changes. The
total traffic volume of a node V (x) is given by the following
expression:

V (x) = VC(x) + VG(x) + VT (x) (1)

Economic attributes: The economic attributes of a node
include its transit prices (one for each location it is present
at).

Transit cost: Let x be a transit customer of y, and let Py(x)
be the lowest transit price of y across all regions in which x
and y overlap. If VP (x) is the traffic exchanged between x
and y, then the transit payment from x to y is:

TC(x) = Py(x)× VP (x)τ (2)

where τ is a transit traffic exponent that captures the economies
of scale observed in practice. The transit revenue TR(y) of y
is simply the sum of transit costs paid by all customers of y.

Peering cost: Nodes engaging in settlement-free peering
relations share the underlying peering costs. There are two
primary mechanisms for peering — private and public — that
have different cost structures. If the traffic exchanged between
two peers is less than a threshold Ψ they peer publicly at an
IXP, otherwise they peer privately. In public peering, nodes
exchange traffic over a common switching fabric at an IXP,
aggregating traffic from different peering sessions through the
same port, whereas in private peering they set up a direct link
with each peer.

Private peering cost: Let VPP (x, y) be the traffic exchanged
between node x and its peer y over a private peering link. The
total cost of private peering for x is given by:

PCprv(x) = α×
∑
y

VPP (x, y)β (3)

where α is the peering cost per Mbps and β is the peering
traffic exponent that accounts for the corresponding economies
of scale.

Public peering cost: Let VPP (x, z) be the traffic exchanged
between node x and its peer z over the public peering
infrastructure. As x aggregates all its public peering traffic
over the same port, the corresponding cost is:

PCpub(x) = α× (
∑
z

VPP (x, z))β (4)

Fitness: The fitness of a node represents its net profit,

F (x) = TR(x)− TC(x)− PCpub(x)− PCprv(x) (5)

If a node is a stub, i.e., a node without any customers, the first
term is zero and the node’s fitness will be negative.



Peering: Two nodes x and y are potential peers if they
satisfy two peering criteria — x and y overlap geograph-
ically, and they do not have an existing customer-provider
relationship. Additionally, a node x uses a peering strategy
S(x) to determine which of its potential peers it wants to peer
with. Unlike provider selection, where a customer unilaterally
chooses its provider, peering is a bilateral decision process.
Thus, two potential peers x and y can peer iff the constraints
of both S(x) and S(y) are satisfied. Depeering, however, is
a unilateral decision by one of the peers. In this paper, we
consider three peering strategies described in Section IV. We
emphasize that GENESIS in not limited to those particular
strategies; we have implemented several other strategies, in-
cluding paid-peering, cost-benefit analysis, etc.

Provider selection: A node must have a transit provider if
it cannot reach all other nodes in the network via its peers
and customers. Node x selects a provider y if: (a) x overlaps
with y, (b) y is “larger” than x (explained next), (c) y is not
a peer of x, (d) y is not a customer of an existing peer of x,
and (e) y is the least expensive among all nodes that satisfy
the previous constraints. We say that a node y is larger than a
node x if y is present in at least as many locations as x, and
it carries more transit traffic than x. If a node x cannot find
a provider that fulfills the previous criteria, then x becomes
a tier − 1 (T1) AS. In order to ensure a connected network,
T1 nodes form a clique using peering links, even if they do
not overlap. A more detailed analysis and justification of this
provider selection model has appeared in [19].

Routing: In GENESIS, interdomain routing follows the
shortest path subject to two common policy constraints: “pre-
fer customer over peer over provider links” and satisfy the
“valley-free” routing property.

Initial topology: To create the initial network topology, we
select nodes sequentially and at random. For a selected node
x, we determine its provider randomly from the set of nodes
that (a) overlap with x, (b) are not in the customer tree of x,
and (c) have greater geographic expanse than x. If we cannot
find a provider for a node, then it joins the clique of tier-1
networks.

Network formation process: An execution, or sample path,
of GENESIS proceeds in discrete time units called iterations.
In each iteration, every node plays asynchronously once. The
order in which nodes play during an iteration is determined at
the start of the sample path, and it remains the same throughout
that sample path. Every time a node plays, it carries out the
following actions: (a) Examine depeering with existing peers,
(b) Examine peering with new peers, (c) Provider selection,
and (d) Peering strategy update. At the end of each iteration,
we recompute the fitness of each node. If none of the nodes has
adjusted its connectivity and peering strategy in that iteration,
then it is easy to show that there will be no changes in
subsequent iterations, and we say that GENESIS has reached
an equilibrium.

The state of the network at any point in time can be defined
based on the connections and peering strategy of all nodes.
Two states A and B are distinct if they differ in terms of the

underlying network topology or the peering strategy of one
or more nodes. Even if we start with the same population of
nodes and the same initial topology, two sample paths can
result in two distinct equilibria as a result of different playing
orders.

IV. DEFAULT MODEL & VALIDATION

In Section III, we described the various components of
GENESIS, without mentioning any parameter values or spe-
cific peering strategies. Here, we present a certain instance of
GENESIS that we refer to as the “Default model” and that
we use in the rest of the paper. The values of the Default
model parameters are shown in Table I, together with a brief
explanation for each parameter.

The peering strategies that we consider in this paper are the
following three:

1) Restrictive: A node that uses this strategy does not peer
with any other node unless if that is mandatory to main-
tain global reachability (“peering-by-necessity”). This
peering strategy is followed only by T1 nodes; those
nodes form a clique to keep the network connected.

2) Open: A node that uses this strategy agrees to peer
with any other node that it overlaps with (except direct
customers). In the default GENESIS model, the Open
peering strategy is followed by stubs because those
nodes aim to reduce their transit costs by peering with
as many other nodes as possible.

3) Selective: A node x that uses this strategy agrees to
peer with node y if Vx

Vy
≤ σ (σ > 0). In practice,

there is a wide range of Selective peering strategies with
several additional constraints and parameters (e.g., a
minimum link capacity or a minimum number of points-
of-presence) [20]. Our Selective strategy is only a model
that aims to capture the essence of those requirements
through a simple formula and single parameter σ. The
Selective peering strategy in the default GENESIS model
is followed by non-T1 transit providers.

A. Validation

The validation of models such as GENESIS is inherently
difficult because there is a lack of available data about the
economics of ISPs and about the interdomain traffic matrix
and traffic flow. Even the AS-level Internet topology is not ac-
curately known because only a small fraction of peering links
are visible through BGP route monitors. Consequently, we
have carried out a best-effort approach to validate GENESIS,
examining whether it produces certain well-known quantitative
or qualitative properties of the Internet. This effort should
be viewed as a sanity check, rather than a comprehensive
validation process, in view of the previous difficulties.

Average Path Length: The average path length of the
AS-level Internet has remained almost constant at 4 AS-
hops, at least during the last twelve years [21]. GENESIS
produces networks with approximately the same average path
length (3.7 AS-hops) with 500 nodes. Additionally, the average
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path length does not increase significantly as we increase the
number of nodes from 500 to 1,000.

Degree Distribution: Figure 1 shows the complementary
CDF (C-CDF) of the degree distribution that results from the
default GENESIS model. Though not a strict power law (the
tail of the distribution is truncated due to the limited number of
nodes), it is clear that the degree distribution is highly skewed,
with few nodes having a much larger degree than most other
nodes.

Link Load Distribution: Figure 1 also shows the distribu-
tion of link traffic loads at equilibrium. Most links in the net-
work are peering links that carry small traffic volumes. There
are, however, few links that carry several orders of magnitude
more traffic; those are mostly transit and peering links between
large transit providers, or between transit providers and major
content producers. Akella et al. [22] have observed a similarly
skewed distribution of link loads in the Internet.

Fraction of transit providers: In the Default model, about
10% of the nodes end up as transit providers at equilibrium,
which is the similar to the corresponding fraction reported in
the measurement study by Dhamdhere et al. [21].

V. STABILITY AND OSCILLATIONS

The network formation process in GENESIS is deterministic
(the playing order does not change during a sample path),
and so it can have one of two possible outcomes: either
convergence to an equilibrium or a limit cycle in which
the network moves repeatedly through the same sequence of
states. An equilibrium results when none of the nodes changes
its connections or peering strategy during an iteration. A limit
cycle, or oscillation, on the other hand, results when the state
of the network S(tk) in the k’th iteration is identical to the
state S(tk−m) in the (k-m)’th iteration with m > 1. The length
of the limit cycle in that case is m. Note that there is no
possibility for chaotic trajectories because the system has a
finite number of states, and so if it does not converge to an
equilibrium, it will eventually return to a previously visited
state.

How often does the network formation process results in
oscillations in practice? We ran many simulations with distinct
node populations and observed that oscillations take place in

about 10% of the sample paths. Even though this is not a large
percentage, it is also not negligible and it has an important
implication: if GENESIS is a good model for the Internet,
we should not expect that the the interdomain connectivity in
the latter will be stable. We return to this point at the end
of this section. We also examined whether the frequency of
oscillations increases with the number of nodes, but we did
not observe any significant difference.

A. Why to study equilibria?

The Internet is in a constant state of flux, as new ASes and
IXPs appear, and the traffic matrix, prices and costs vary with
time. The reader may wonder, why to study equilibria in a
system that is constantly evolving?

The fact that GENESIS leads to an equilibrium, at least
in 90% of the sample paths, means that as long as those
exogenous parameters (set of nodes, locations, traffic matrix,
costs, etc) remain constant, the network formation process
converges to a stable point. If this convergence takes place
quickly, compared to the time scales in which those exogenous
parameters change, the evolution of the Internet can be thought
of as a trajectory through a sequence of equilibria, with a new
equilibrium resulting every time there is a change in one of
the previous exogenous parameters.

B. Oscillations

Causes of oscillations: We analyzed many oscillatory sam-
ple paths, attempting to identify a common cause behind all of
them. Every oscillation involves at least one transit provider
that moves in and out of the tier-1 clique. We explain this
pattern with a simple example shown in Figure 2.

Let x, y and z be three nodes, with x and y being transit
providers. The status of z does not affect the oscillation. x and
z are initially transit customers of y. Consider the following
sequence of actions.

1) The non-T1 provider x, using the Selective strategy,
peers with z, as shown in Figure 2 (a). This reduces
the transit volume of y (as traffic x↔ z now bypasses
y) to the point that x cannot find a provider that has
larger transit volume than itself.

2) Then, x acquires tier-1 status and switches to the Re-
strictive peering strategy. x and y peer because they are
both tier-1 providers.

3) x depeers z, because z does not qualify as peer under
the Restrictive strategy.

4) As a result of step-3, VT of y is restored (as traffic x↔ z
has to now go through y).

5) y depeers x, since it now has larger transit volume and
it can become the provider of x.

6) As a result of step-5, x becomes a tier-2 provider and it
switches back to the Selective peering strategy, as shown
in Figure 2 (c).

7) x peers again with z, which returns us to the initial state.
The previous example is only an abstraction of more complex
oscillatory sample paths that occur in practice, involving more
nodes and more steps.



TABLE I
INPUT PARAMETERS

Parameter, Symbol, Description Value Explanation
Number of ASes N 500 Simulation time constraints
Number of geographic locations GMax 50 Based on approximate ratio of IXPs to peering networks in the Internet.

PeeringDB ratio 10.27. GENESIS ratio 10.0 [23]
Geographic expanse distribution Zipf(1.6) Based on data about number of participants at each IXP collected from

PeeringDB [23]. G(x) assigned randomly to each node
Maximum expanse for an AS 15
Generated traffic distribution Zipf(1.2) Produces a heavy-tailed distribution of outgoing traffic. With this distribution,

0.1% of the ASes generate nearly 28% of the total traffic. This is consistent
with the behavior reported in [24], [25] & [1], which show that the traffic

produced by high-ranking ISPs and content providers follows a Zipf
distribution. VG(x) assigned randomly to each node

Consumed traffic distribution Zipf(0.8) Produces heavy-tailed distribution of incoming traffic, similar to measured
traffic distribution at Georgia Tech.

Mean consumed traffic 500 Mbps VC(x) ∝ |G(x)|, rationale being that a node with large expanse will also
have a large number of access customers

Private peering threshold Ω 50 Mbps Survey of peering strategies [20]
Transit cost multiplier range P (x) $[35,45]/Mbps per iteration Parameterized based on IP transit prices advertised by VoxNet [26]. P (x)

assigned randomly
Transit cost exponent τ 0.75 Parameterized based on data from [16] and [20]
Peering cost multiplier α $20/Mbps per iteration
Peering cost exponent β 0.40
Selective peering ratio σ 2.0

Fig. 2. Oscillation example

Network-wide effects of oscillations: We next study the
effect of oscillations on the entire network as well as the af-
fected nodes. We use the Jaccard similarity metric to quantify
the similarity between two network states. If LA and LB are
the sets of links in states A and B , respectively, then the
Jaccard similarity between the two states is defined as:

JAB =
|LA

⋂
LB |

|LA
⋃
LB |

Note that a link is defined by both its two end-points as well
as its type (transit versus peering). The value of JAB = 0
indicates that the two networks do not have any link in
common, whereas JAB = 1 indicates that the two states are
exactly the same. In addition to the complete network, we also
examine the sub-network composed only of transit providers,
excluding stubs and their links. We refer to this sub-network
as the provider network.

For each oscillatory sample path, we compute the mini-
mum Jaccard similarity across all pairs of states during an
oscillation. Figure 3 shows the distribution of these minimum
similarity values, across all oscillatory sample paths. When we
examine the complete network, the minimum Jaccard similar-
ity is almost equal to one in all oscillations, i.e., the oscillation
affects the connectivity of only few nodes. We observed that
in 95% of oscillations the number of nodes that undergo any
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change (connectivity and/or strategy) during the oscillation
is less than 5% of the total network population. Note that
all nodes involved in oscillations are not transit providers;
some nodes are stubs that act as passive participants in the
oscillation. When we only examine the provider network, the
corresponding minimum Jaccard similarity values are lower
but still higher than 0.90. In other words, oscillations cause
more fluctuations in the connectivity of transit providers but
those fluctuations are still mostly local in scope.

Length of oscillations: We measured that 95% of the
oscillatiory sample paths have a limit cycle length that is
less than 9 iterations. This length is positively correlated with
the number of affected ASes (Pearson correlation coefficient:
0.92). Thus, the more nodes change connectivity or peering
strategy during an oscillation, the longer it will take for the
network to repeat its limit cycle.

How are oscillations relevant to the Internet? Peering
agreements and negotiations are typically shrouded in secrecy,
yet peering disputes between high-profile nodes over traffic



ratios, content types, and peering conditions often generate
attention. For example, Cogent and Sprint-Nextel terminated
their peering relationship in 2008 after they failed to resolve
a peering dispute. However, the peering relationship between
them was restored after some time. Similar disputes have
been reported between Level-3 and Cogent (2005), Cogent
and Telia (2008), and Level-3 and Comcast (2010). Peering
disputes between large providers often have significant effects,
as single-homed customers of those nodes are unable to reach
each other.

The fact that GENESIS can produce oscillatory sample
paths should not be considered an artifact of the model. As
described earlier, oscillations in GENESIS occur because some
providers switch between tier-1 and non-tier-1 status, which
resembles the peering disputes between tier-1 providers seen
in practice. In the real world, such disputes do not persist
and some exogenous mechanisms (such as revised contracts,
negotiations, regulation or legal actions) are applied to break
the impasse. GENESIS does not capture those exogenous
mechanisms, but it captures that the endogenous dynamics
of the network formation process cannot always manage to
produce a stable network, and so some additional mechanisms
should be designed to resolve such oscillations when they
appear.

VI. VARIABILITY ACROSS EQUILIBRIA

In this section we focus on those sample paths that con-
verge to an equilibrium, and examine the differences between
distinct equilibria. Specifically, given a population of nodes
and an initial topology, does GENESIS always result in the
same equilibrium? If not, how different are the resulting
equilibria? What are the causes of these differences? Can we
predict the properties of an individual node at equilibrium? Are
there any global properties that are predictable with statistical
significance? And who are the most predictable, or least
predictable, nodes in an network, in terms of fitness?

Distinct equilibria: The network that will emerge from
a GENESIS sample path highly depends on both the initial
topology and the playing order. Specifically, given the same
population of nodes and the same initial topology, 85% of the
sample paths that converge to an equilibrium produce a distinct
equilibrium. If the initial topology also varies across sample
paths, this percentage increases to 90%. So, if GENESIS is a
good model of the Internet, we understand that it is very hard
in practice to predict the evolution of the Internet, as even
minor changes in the order in which ASes act can have global
effects.

Differences between equilibria: To quantify the difference
between distinct equilibria, we again use the Jaccard similarity
metric between the corresponding network states. Figure 4
shows the CDF of that metric for all pairs of distinct equilibria
resulting from 100 sample paths. Note that the Jaccard similar-
ity is typically higher than 0.90 when we only vary the playing
order. When we also vary the initial topology, the similarity
metric is lower (between 0.75-0.9) but still high in absolute
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terms. So, even though there are many distinct equilibria, they
are quite similar in terms of topology.

Figure 4 also shows the distribution of Jaccard similarity for
the subset of the network that includes only transit providers
(the “provider network”). In this case, the Jaccard similarity
is significantly lower, with 50% of the equilibrium pairs being
less than 65% similar. In other words, even though stubs
often end up with the same transit provider across different
equilibria, the hierarchy of transit providers and the peering
links between them are much less predictable.

Variability of fitness distribution: We next focus on the
distribution of fitness values in an network. How different is
this fitness distribution across different equilibria? We applied
the two-sample Kolmogorov-Smirnov (KS) test on the fitness
distribution across all pairs of equilibria. We did so both for
the entire network, and for the provider network. We could not
reject the null hypothesis that the distributions are identical
for any pair of distributions at the 99% significance level. In
other words, even though there are many distinct equilibria, the
statistical distribution of the nodes’ fitness remains invariant.
However, this does not mean that the fitness of an individual
node would remain the same across different equilibria; this
is the subject of the next paragraph.

Variability of individual node fitness: Next, we look at the
variability of the fitness of individual nodes across different
equilibria. We compute the Coefficient of Variation (CoV) of
the fitness of each node across 100 equilibria resulting from
different playing orders. Figure 5 shows the CDF of the fitness
CoV for the entire population of nodes. The CoV is close to
zero for 90% of nodes indicating that most nodes see almost
identical fitness in all equilibria. However, 5% of the nodes
have CoV greater than 1.0 and 1% of the nodes have CoV as
high as 3.0. Who are these “most unpredictable” nodes and
what causes the large variability in their fitness?

We classify nodes in two classes. Class-1 nodes are those
that are either stubs at all equilibria, or that are transit
providers at all equilibria. Class-2 nodes, on the other hand,
are those that are transit providers in some equilibria and stubs
in others. Figure 5 also shows the CoV distribution for these
two classes of nodes. Note that the CoV of Class-1 nodes is
close to zero for almost all nodes, while the CoV of Class-
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Fig. 5. CDF of fitness CoV for different network classes

2 nodes is significant for most of them. In the following, we
discuss the properties of the nodes in each class in more detail.

Properties of Class-1 nodes: The largest fraction of nodes in
this class are stubs (including nodes that were transit providers
initially but are stubs at equilibrium). It is not surprising
that the fitness of stubs does not vary significantly across
equilibria. These nodes do not have revenues and their provider
is always the cheapest node at the locations they are present at.
Additionally, they use the Open peering strategy, and so their
set of peers consists mostly of other stubs that are co-located
with them. Additionally, however, Class-1 includes some large,
in terms of geographical expanse, transit providers (12~15
locations). These providers have a large set of customers and
so significant transit traffic. Their large transit volume and
expanse restricts their set of providers and peers, reducing the
variability in their connectivity and fitness across equilibria.
Note that tier-1 providers always belong to Class-1.

Properties of Class-2 nodes: We observe that most nodes
in this class have mid-range expanse (6~10 locations) and
relatively high prices. Thus, while they are mostly unattractive
as transit providers for stubs, smaller transit providers may
choose them as provider, depending on their expanse and tran-
sit traffic volume. The latter, however, changes dynamically as
a node gains or loses customers during a sample path. This
aspect of the model creates a positive feedback effect where
the larger the transit volume of a node is, the more it qualifies
for being chosen as provider by other providers. However,
who are the nodes that will benefit from this positive feedack
strongly depends on the order in which the nodes act. In other
words, the nodes in Class-2 are mostly nodes that end up as
transit providers in some equilibria simply because they were
“lucky” in those sample paths to get some customers early in
the network formation process, accumulating transit volume
and then attracting even more customers. It is these nodes
that exhibit the largest variation in fitness and that act as the
biggest source of variability in the resulting networks.

VII. IS IT A ZERO-SUM GAME?

In the previous section, we showed that GENESIS can
produce many distinct equilibria. While the fitness distribution
does not change significantly across equilibria, the fitness of

certain individual nodes varies widely. An important question
is whether the gain of one node results in a corresponding loss
for another node (or nodes) at the same equilibrium. In other
words, are the nodes of the network engaged in a zero-sum
game, where the total fitness in the network remains constant
across equilibria? If so, under which conditions is this true?
If not, when would the total fitness increase or decrease?

Consider a network that consists of a set N of nodes;
a subset P of these nodes are transit providers while the
remaining nodes (subset S) are stubs. Let Ti, Ri and Fi
represent the transit costs, peering costs, and fitness of network
i, respectively. Consider a transit link between customer i and
provider j, and let tij be the transit payment from i to j.
The fitness of i includes the term −tij , while the fitness of
j includes the opposite term tij . As a result, if we compute
the total fitness across all nodes, the transit payments between
customer-provider pairs cancel out. On the other hand, the cost
that two nodes x and y incur for a peering link between them
appears as a negative term in their respective fitness functions.
Consequently, the total fitness of all nodes can be written as∑

N
Fi = −

∑
N
Ri (6)

The previous equation shows that the set of nodes in N
would participate in a zero-sum game if the sum of all
peering costs is constant across equilibria. For the default
parametrization in GENESIS, we observe that while the sum of
all peering costs was not constant it did not vary significantly
either. For instance, we measured the CoV of

∑
N Fi in 100

equilibria (resulting from different playing orders), and it was
both low (0.04) and almost equal to the CoV of

∑
N Ri.

Hence, when we consider the entire population of nodes, the
total fitness in the network does not vary significantly across
equilibria and the underlying game is approximately zero-sum.
This implies that that the resulting equilibria are approximately
Pareto optimal, i.e., it is not possible to increase the fitness of
a node without necessarily decreasing the fitness of any other
node.

Let us now consider the subset of transit providers, and ask
whether their total fitness remains constant across equilibria.
Consider a transit link between customer i and provider j,
with a transit payment tij . If i is a stub, then the term tij
appears in the fitness of j. Since we compute the total fitness
only of providers, however, the opposite term −tij (which
appears in the fitness of i) is not included in the summation.
Consequently, the total fitness of all transit providers is∑

P
Fi =

∑
S
Ti −

∑
P
Ri (7)

where the first term is the total amount of transit costs paid
by stubs to providers, and the second term is the total costs
for peering links only between providers. For the same 100
equilibria considered above for the entire population, the CoV
of

∑
P Fi was lower (0.02) than the entire population.

So, the set of transit providers participate in a zero-sum
game if the following three conditions are true across all



equilibria: (a) the set of providers P (and so the set of stubs
S) remains the same, (b) the total transit payments from
stubs remain constant, and (c) the sum of provider peering
costs remain constant. Interestingly, we observed that the
three conditions are typically true in GENESIS for the default
parametrization, at least as an approximation and hence we
can expect that the resulting equilibria are Pareto optimal for
the population of transit providers.

However, an increase in σ, which allows transit providers
to peer more openly, the peering costs show more variation
resulting in higher CoV for

∑
N Ri and

∑
P Fi. For example

we observed the CoV of
∑
N Ri to be 0.08 and 0.27 and

the CoV of for
∑
P Fi to be 0.07 and 0.73 for σ=10 and

σ=1000 respectively. In an open peering environment the set
of providers undergoes greater variation when subjected to
different playing order. Thus, as peering increases in the net-
work the notion of Pareto optimality for providers at equilibria
becomes weaker.

VIII. CASE STUDY: PEERING OPENNESS

Nodes engage in settlement-free peering mainly to re-
duce upstream transit costs and to connect directly to the
sources and destinations of their traffic. However, nodes should
selectively decide which nodes to peer with because peering
has its own costs and it increases the monitoring and manage-
ment overhead. In GENESIS, a single parameter σ determines
the peering openness of all nodes; a larger value of σ indicates
an increased openness to peering. In this section, our goal is to
study how this peering openness, captured by the parameter σ,
affects the properties of the resulting network. In particular, we
are interested in the value(s) of σ that results in the maximum
fitness for different classes of nodes.

We focus on how the peering openness in the system affects
the fitness, revenue and costs for three types of transit provider:
tier-1 or T1 providers (they do not have a provider), tier-2 or
T2 providers (their provider is a T1 node), and tier-3 or T3
providers (all other providers).

We simulate 20 different populations across 30 playing
orders and examine a range of σ values which span the
spectrum from “Restrictive” to “Open” peering. We then
measure the fitness, revenue, and costs of each transit provider
at different values of σ. We normalize the fitness of each
node x in a population by its maximum absolute fitness. We
similarly normalize the revenue and cost components of each
node. A node x in a population is classified as belonging to
a particular class of providers (T1, T2 or T3) if it belongs to
that class in at least 80% simulations.

Figure 6 shows the average normalized fitness of all nodes
in each class of providers as we vary σ. Figure 7 shows the
average normalized transit costs, transit revenues and peering
costs for tier-2 and tier-3 transit providers.

Fitness of T1 providers: As σ increases, nodes in the
customer tree of T1 nodes peer increasingly with each other,
and less traffic flows through T1 nodes. Consequently, T1
fitness shows a monotonic decrease as σ increases.
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Fitness of T2 providers: T2 providers in general have large
transit volumes, due to their large customer base and expanse.
For σ between 1 and 5, T2 providers are able to peer with other
nodes that have similar traffic volumes (other T2 providers
and major content providers), thus reducing their transit costs.
At the same time, there is no major reduction in T2 transit
revenues in this range of σ, as peering is not yet pervasive in
the customer trees of T2 nodes. Additionally, T2 peering costs
are low, as they are able to aggregate peering traffic on a few
peering links. Consequently, their fitness is maximized in this
range of σ.

Fitness of T3 providers: T3 providers and their customers
generally have low traffic volumes and limited expanse, which
limits their opportunities to peer. As σ increases, T3 providers
are able to reduce their transit costs by peering. Simultane-
ously, their peering costs increase, but this increase is smaller
than the decrease in transit costs. T3 nodes are less susceptible
to losing transit revenue, as their customers have limited
peering opportunities until σ increases to very large values.
Figure 7 shows that the average transit revenue of T3 ASes
remains almost constant until σ=10.0. The net effect is that
T3 providers show a monotonic, albeit more gradual, increase
in fitness as compared to T2 providers.

Open peering regime: Figure 6 shows a decrease in fitness
of all provider categories beyond σ = 10. As we increase σ,
we see an increase in peering between providers and stubs.



The more providers peer with stubs, the more they reduce
the transit traffic (and hence revenues) of other providers.
This effect, which we call transit stealing, becomes more
pronounced beyond σ = 10. Thus, the threshold σ ' 10.0
acts as the approximate edge of open peering in the network.
The dynamics of the open peering regime are interesting. In
this range of σ, increased peering reduces the transit traffic
volume of most providers. A large value of σ implies that such
providers agree to peer with stubs. Peering between providers
and stubs reduces the transit traffic volume of the providers of
those stubs, which further increases the willingness of those
providers to peer with stubs. The result is a positive feedback
loop where the more providers peer with stubs, higher is their
collective openness to peering.

Global network properties: Finally, we study how the
topological properties of the network change as we vary σ. We
define link density as the ratio of the number of existing links
to the number of possible links, given geographic constraints.
We observed that link density increases from 70% for the
default model (σ = 2), to 97% with Open peering (σ ≥ 10).
We also observed that the average path length decreases to
2.53 AS hops with Open peering, as opposed to 3.7 for the
default model. An interesting aspect of increasing openness is
that the the number of transit providers decreases from 10% of
the population in the default case, to 7% with Open peering.
As more ASes are able to reach their destinations via peering
links, some transit providers lose all their transit traffic and
become stubs.

IX. CONCLUSIONS

We proposed GENESIS, an agent-based network formation
model that captures interdomain traffic flow, policy-based
routing, geographic constraints, and the economics of transit
and peering relations. GENESIS is a flexible and extensible
tool that can be used to study the network formation dynamics
and equilibria (or oscillations) that result under different
conditions, parameters and provider/peer selection strategies.
We examined the convergence properties of GENESIS, and
found that GENESIS results in a stable network in most cases.
The observed cases of instability occur due to transitions of a
few nodes to and from the T1 clique, resembling real-world
peering disputes between T1 providers. GENESIS shows both
path dependence and dependence on initial conditions, i.e.,
it can produce different equilibria depending on the initial
topology and playing order of nodes which we believe is also
true of the Internet. We found that while these equilibria are
distinct in terms of network topology, it is possible to predict
certain properties of the network or of certain classes of nodes
with statistical significance. We also showed that formation
of the entire network can be thought of as an approximate
zero-sum game under three conditions. As an application of
GENESIS, we studied the properties of the network and the
fitness of three classes of transit providers as we vary the level
of peering openness.

In ongoing work, we use GENESIS to understand what
happens when each node dynamically selects from a set of

peering strategies the strategy that maximizes its fitness.
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