
Gaining Insight into AS-level Outages through
Analysis of Internet Background Radiation

Karyn Benson, Alberto Dainotti, KC Claffy
CAIDA, UC San Diego

Email: {karyn, alberto, kc}@caida.org

Emile Aben
RIPE NCC

Email: emile.aben@ripe.net

Abstract—Internet Background Radiation (IBR) is unsolicited
network traffic mostly generated by malicious software, e.g.,
worms, scans. In previous work, we extracted a signal from IBR
traffic arriving at a large (/8) segment of unassigned IPv4 address
space to identify large-scale disruptions of connectivity at an
Autonomous System (AS) granularity, and used our technique to
study episodes of government censorship and natural disasters
[1]. Here we explore other IBR-derived metrics that may provide
insights into the causes of macroscopic connectivity disruptions.
We propose metrics indicating packet loss (e.g., due to link
congestion) along a path from a specific AS to our observation
point. We use three case studies to illustrate how our metrics
can help identify packet loss characteristics of an outage. These
metrics could be used in the diagnostic component of a semi-
automated system for detecting and characterizing large-scale
outages.

I. INTRODUCTION

Internet Background Radiation (IBR) is a mix of unsolicited
network traffic mostly generated by malicious activity, e.g.,
worms, scans, most easily observed by instrumenting large
segments of unassigned address space (or “darknets”) [2], [3].
Researchers have analyzed IBR traffic to detect and analyze
worm spreading [4], [5] and denial-of-service attacks [6].
Casado et al. [7] proposed techniques to use IBR traffic
to opportunistically measure network properties unrelated to
malware, e.g., local link bandwidth, host uptime, NAT usage.
Dainotti et al. [1], [8] also applied the opportunistic mea-
surement idea to IBR traffic, extracting signals that revealed
interesting dynamics of large-scale connectivity disruptions,
e.g., caused by country-level censorship or large earthquakes.
IP addresses from disconnected networks will not send IBR
traffic, and mapping such addresses to their geolocation en-
ables an estimation of the geographic impact of a natural
disaster on communications infrastructure [1]. Comparing IBR
traffic levels to BGP observations allows one to distinguish
between control plane and data plane (e.g., packet filtering)
disruptions, as when governments experiment with different
approaches to Internet censorship [8].

We investigate new IBR-derived metrics that can provide in-
sights into the causes of macroscopic connectivity disruptions.
These metrics can indicate whether an outage involves packet
loss, e.g. due to link congestion. The vast majority of IBR
traffic is composed of TCP SYNs probing the Internet trying to
establish connections to vulnerable (usually Windows) hosts.
Because a darknet is completely passive (it does not respond

to any packets), sources sending these SYNs must re-transmit
them. TCP retransmit behavior (such as how many retransmits
per connection attempt, and how much time between them) is
typically a function of the host operating system or application,
which means it is consistent across large enough populations
of hosts to constitute a reliable signal. We derive two metrics
from two different dimensions of this signal: the number of
SYN retransmit per TCP flow; and the distribution of inter-
packet times (IPT) between them. We show that both metrics
can reflect packet loss, providing additional insight compared
to metrics that only indicate reachability. We apply this metric
to three case studies where either route leaks caused link
congestion for an entire AS (and ultimately a complete outage
in one case) or packet filtering imposed by a regime almost
entirely isolated a country from the rest of the Internet.

Traditional passive approaches to inferring packet loss use
attributes such as the congestion window [9], RTT [9], [10],
and TCP acknowledgments [11] – all of which require bidi-
rectional communication. In contrast, we: (i) observe uni-
directional traffic from a darknet, and (ii) use retransmit pack-
ets as opportunistic probes that measure large-scale Internet
events. We are not aware of similar studies and we consider
this work a first attempt to investigate this approach.

II. DATA SOURCE AND SIGNAL EXTRACTION

We analyze IBR traffic captured at the UCSD Network
Telescope, a /8 darknet of unassigned IP addresses [12]. A
darknet receives but does not respond to traffic, so all flows
(defined as the traditional 5-tuple) are unidirectional. When an
external host attempts to open a TCP connection, the resulting
flow carries only SYN retransmits, which we call a SYN flow.

To derive IBR metrics that correlate with packet loss, we
need attributes that are normally consistent yet change during
connectivity disruptions. The ideal signal would be strong (sta-
tistically significant), stable (low noise), and globally pervasive
(seen in most networks). But IBR includes diverse types of
traffic [2], [3], so we selected two subsets of IBR that have
consistent and predictable enough behavior to use as signals
for packet loss:

• Conficker-like traffic, i.e., SYN flows to TCP port 445,
widely publicized during the Conficker episode in 2008
but a target of scanning activity for years; it constitutes a
large percentage of the packets observed at the UCSD
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Attribute Extracted Metric Reference What significant change we can infer
traffic volume packets per second [8] connectivity disruption
number of sources θ [1] connectivity disruption and its intensity
average number of SYN retransmissions γ Section III-A packet loss (e.g., congestion)
inter-packet times between SYN retransmits η Section III-B packet loss (e.g., congestion)

TABLE I: Attributes and Metrics used to infer outages and their characteristics.

telescope (more than 40%), is globally pervasive, and
consistent [13], [14].

• The default configuration of Windows machines is to
send at most 3 SYN packets [15] when attempting to
establish a connection, which makes SYN flows from
such machines a consistent signal.

To infer packet loss, we selected two attributes of SYN
flows – number of retransmissions and IPT – that follow
consistent patterns. Since the darknet never responds with an
ACK, the number and timing of SYN retransmits is determined
by the application or the OS originating such traffic. The
consistency of these attributes depends on the conditions of
the path traversed by the packets, so substantial drops in SYN
retransmits or substantial variation in the IPT may reflect
network-induced packet loss.

We did a preliminary analysis of SYN flows collected at the
UCSD Network Telescope for January 20121, during which no
large-scale outages occurred. We used Corsaro [16], a publicly
available software tool that supports plugins for the analysis
and tagging of darknet traffic. We implemented a passive OS
fingerprinting plugin, based on p0f [17], to analyze our two
selected traffic classes.
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Fig. 1: Packet size vs. number of packets per flow by OS (Jan. 2012)
for Conficker-like traffic. The radius of each circle is proportional to
the percentage of SYN flows from the given OS having that packet
size and number of packets. Windows 7 or 8 and Non-Windows hosts
send a variety of packets per flow and packet sizes - making it hard to
extract a stable signal. Conversely, Windows XP and NT consistently
send flows with 2 packets of size 48 or 52, creating a stable signal.

A. Conficker-like Traffic
Figure 1 shows the distribution of SYN flows destined

to TCP port 445 as a function of packet size, number of
retransmits, and OS. Most of these SYN flows contain only
two SYN packets, consistent with the behavior of Conficker-
infected hosts [14]. To obtain a strong and stable signal for a

1The telescope was down for about 40 hours starting on 2012-01-14 and
for about 120 hours starting on 2012-01-19.

Operating System Number of Flows
Windows XP 2299144254
Windows NT 229961989
Windows 7 or 8 53445230
Other (Linux, BSD, Solaris, . . . ) 394731

TABLE II: Conficker-like SYN flows observed per OS (Jan. 2012)

Port OS %3-Flows Num 3-Flows Num /8
80 Windows 7 or 8 0.850 6107763 184
443 Windows 7 or 8 0.775 2656821 170
443 Windows NT 0.828 2602825 169
1433 Windows XP 0.814 39476702 114
3260 Windows 7 or 8 0.987 293572 85
4661 Windows NT 0.984 183551 97
4899 Windows 7 or 8 0.993 16108965 73
28931 Windows 7 or 8 0.984 25961 71
22292 Windows XP 0.804 11433398 174

TABLE III: The top four OS-port combination flows of the following
categories: at least 25,000 3-packet SYN flows; originating from 64
or more /8 networks; 3-packet SYN flows comprise more than 75%
of the SYN flows from the specified OS and port. There are 9 listed
in the table because of overlap in the top-four lists. (Jan. 2012)

retransmit-based metric, we tried to isolate such behavior (i.e.,
2-packet SYN flows) by selecting only flows from Windows
XP and Windows NT (about 89% and 9% of the total flows
in Table II) with packet sizes of either 48 or 52 bytes. The
IPT metric is not usable with the Conficker-like traffic since
the flows only have two packets; loss of one of them prevents
a valid IPT calculation.

B. Default Windows Behavior

To build a second signal usable for packet loss inference,
from IBR observed at the UCSD Network Telescope in Jan-
uary 2012 we selected the port-OS combinations satisfying all
of the following criteria:
• more than 75% of their SYN flows carry 3 packets

(aiming at a stable signal);
• more than 25000 3-packet SYN flows (strong signal);
• their 3-packet SYN flows originate from more than 25%

of the total number of /8 IPv4 networks (globally perva-
sive signal).

We selected 100 port-OS pairs that met these criteria, including
56 “Windows 7 or 8” ports, 29 “Windows XP”, and 15
“Windows NT”. Table III lists the top four port-OS pairs for
each separate criterion.

Although the total number of 3-SYN flows that we select
is two orders of magnitude smaller than Conficker-like flows
(about 156M vs. 13B in January 2012) and the number of
sources generating 3-pkt SYN flows is smaller by a factor of
7 (an average of 14K hosts/hour compared to 100K Conficker
hosts/hour in January), having a second traffic signal is still
useful, especially to validate findings. Also, the 3-SYN flows
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metrics are not malware-specific, which is especially important
as machines are upgraded and patched, limiting the spread of
the Conficker-like traffic. The 3-SYN flows are also amenable
to IPT calculations when one of the packets is lost, unlike the
Conficker-like (mostly two-packet) flows.

III. DEFINITION OF METRICS

A. Number of Packets per SYN Flow: γ

We first considered simply the average number of packets
per SYN flow from the selected traffic (either Conficker-like
or 3-pkt SYN flows). When considering flows sent by only
a subset of source IPs, such as the AS-level interpretation
(that is, computing such metric only for IBR originating from
a specific AS), this value could be significantly skewed as
a result of the increased influence of a single host or flow.
For example, when a single host conducts a horizontal scan
by sending one packet to every IP address in the darknet, the
AS-level average is approximately 1 packet per flow regardless
of other host activity from that AS. Similarly, a single flow
consisting of a large number of SYN packets significantly
increases the overall average. The following improvements
reduce the impact of such anomalies:
• we exclude all the SYN flows with more than a given

number of packets: three for Conficker-like SYN flows
(97% of SYN flows had three or fewer packets in our
reference dataset of January 2012); four for the Default
Windows SYN flows;

• we calculate the average number of packets per SYN flow
for each distinct source IP, and then take the average
(mean) of this distribution, thus limiting the influence of
a single source IP sending packets to the darknet.

If the set of all source IPs is S, Fs denotes the set of flows
matching our criteria with source IP s, and the function
packets(f) returns the number of packets in a flow f then
our metric is

γ =
1

|S|
∑
s∈S

∑
f∈Fs

packets(f)
|Fs|

(1)

If there are no sources matching our criteria, then γ is
undefined. We call the metric γC for the Conficker-like traffic
and γ3 for the flows that are expected to have three packets per
SYN flow. We do not combine the two metrics γC and γ3, as
the ratio of hosts contributing to each metric is not constant.

Figure 2 shows this metric across all ASes for January 2012,
calculated in hourly bins. The number of source IPs and γ
approximately follow a sinusoidal pattern with a phase of one
day. The value of γC is always between 1.98 and 2.02. The
value of γ3 is always between 2.59 and 2.78. The large drop
in γ3 seems to be related to traffic on BitTorrent and HTTPS
ports.

Outages are likely to affect only a subset of the Internet
hosts. Grouping by AS provides a natural way to divide the
IP address space. We used CAIDA’s Prefix to AS Mapping
Dataset and RouteViews BGP data [18]. Figure 3 shows γC
calculated for three ASes of different size. As expected, when
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Fig. 2: Number of source IPs and new metrics for all ASes (Jan.
2012) with time bins of 1 hour. The number of source IPs sending
Conficker-like and Default-Windows traffic is significant and follows
a sinusoidal pattern. γC is always between 1.98 and 2.02; γ3 is
always between 2.59 and 2.78; η is always between 3.09 and 3.37.
Under normal circumstances, each metric has a small range - which
is necessary to identify deviations associated with outages. The
telescope was down for about 40 hours starting on 2012-01-14 and
for about 120 hours starting on 2012-01-19.

calculating γC for a single AS, there is higher variance for
ASes with fewer infected hosts, typically proportional to their
size. Increasing the size of the time bins would reduce such
measurement variance, but at the expense of precision in when
a connectivity disruption occurred.
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Fig. 3: AS-level γC and number of source IPs for three ASes with
different number of infected hosts (Jan. 2012, hourly bins). When
there are more infected hosts γC is more consistent – meaning it is
more useful for discerning abnormalities.

B. Inter-Packet Times: η

Hosts following RFC 6298 [19] should wait at least one sec-
ond before retransmitting the initial SYN packet; subsequent
retransmission timeouts (RTOs) should back off exponentially
by a factor of two. The convention is to use 3 seconds as
the initial RTO (i.e., the RTOs are normally 3, 6, 12, 24, . . .
seconds).2 The average of the first IPT can be used to verify
the findings of the γ metric. In flows with three packets, if a

2Although RFC 6298, states that the RTO should be 1 second, we observe
in the darknet that the RTO is still ∼3 seconds for more than 99% of flows
from Windows hosts. If an RTO of 1 second is more widely adopted, we can
identify the RTO typically used by each source and normalize the metric.
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single packet is lost, the first IPT is either (approximately) 6,
9, or 3 seconds corresponding to loss of the first, second, or
third packet, respectively. We can only calculate η on expected
3-pkt SYN flows.

As in the calculation of γ, we consider the possibility of
skew from a few deviant hosts. If Fs denotes the set of flows
with source IP s that are expected to have 3 packets and have
at least 2 packets, S = {s ∈ seen source IPs|Fs 6= ∅}, and
the function IPT(f) returns the first IPT of a flow f , then our
metric is

η =
1

|S|
∑
s∈S

∑
f∈Fs

IPT(f)
|Fs|

(2)

If |S| = 0, then η is undefined.
η is a less precise metric than γ, since it uses fewer

flows during connectivity disruptions, allowing it to skew
more easily. However, the combination of η and γ allows for
strong inference. A decrease in γ may also mean that fewer
packets than expected are actually being sent for a traffic
class instead of being lost along the path, but η can help
us distinguish between the two cases (i.e., assuming RFC-
compliant behavior, η can distinguish between sending only
two packets and a random loss of one of three packets).
Figure 2 shows η calculated across all ASes for January 2012.

IV. CASE STUDIES

In this section, we evaluate our metric using three different
service-disruption case studies. The first two outages – the
“Dodo-Telstra” and the “Bell-Dery” case – had network-
induced packet loss as a result of BGP route leaks [20], [21].
The third one – the Libyan Internet blackout – was the result
of packet filtering. If effective, our metrics will reflect packet
loss in the first two case studies but not in the last.

For each of the case studies, we only use metrics which
were stable throughout the entire month preceding the outage.

A. “Dodo-Telstra” Routing Leakage

On February 23, 2012, around 2:40 UTC, the multi-homed
network operator Dodo announced internal BGP routes to its
provider Telstra, a major ISP in Australia, which erroneously
accepted them. As a result, Telstra sent all of its traffic to
the small network, Dodo, instead of a large transit provider,
inducing a bottleneck leading to a complete outage [20]. The
effect was massive: most Australians were left without Internet
connectivity for about half an hour [22].

Figure 4 plots our metrics for IBR traffic originating from
AS1221 (Telstra) calculated in 5-minute bins. The figure
shows significant drops of both γC and γ3 during the first
phase (20 minutes) of the episode, meaning that far fewer
packets per flow were reaching the darknet than normal.
However, when γC and γ3 first drop, η increases from about
3 to 5 seconds, which corroborates packet loss (assuming
individual hosts did not change their retransmission patterns).
This spike was calculated using the 7 distinct source IPs
observed from this region at the darknet. In the following three
5-minute time bins the number of sources (0, 1, 2 respectively)

contributing to the calculation of η was not statistically signif-
icant. Such a significant drop in γC and γ3 and the increase
in η are a direct consequence of congestion on the affected
links. Routers started dropping packets, including some of
the SYN packets destined to the darknet. Eventually, this
congestion deteriorated to a complete outage (lasting another
20 minutes), during which the telescope did not observe any
sources sending SYN packets from Telstra (so our metrics
cannot be calculated).
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Fig. 4: Our packet-loss metrics plotted in 5-min. bins for traffic
originating from AS1221 during the Dodo-Telstra routing leak in
February 2012. The arrow points at the first phase (20 minutes) of the
outage, where the metric values indicate a bottleneck, i.e., packet loss:
γC and γ3 decreased, and η increased. The number of IPs sending
Conficker traffic remained the same, while the number of IPs sending
3-SYN flows decreased – an artifact of the frequency at which each
type of host contacts the darknet. In the second phase, no flows were
observed in the darknet traffic, implying a complete outage.

B. “Bell-Dery” Routing Leakage

On August 8, 2012, at 17:27 UTC, dual-homed provider
Dery Telecom started to leak a full BGP table to the major
Canadian ISP Bell. These routes were accepted and propagated
to Bell’s peers [21]. Our analysis shows that the biggest
disruption lasted about half an hour.

Figure 5 plots our metrics calculated for traffic coming
from AS577 (Bell) surrounding the outage. The Bell network
never was completely offline, but the plot indicates a severe
disruption (∼17:30-17:45) followed by slight improvement
(∼17:45-17:55) before restoration. During this time period,
the total number of Conficker and 3-SYN source IPs dropped
from about 12 and 20 to 2 and 6, respectively. Both γ3
and η indicate significant packet loss during this time period.
Strangely, γC stayed close to 2 during the worst part of the
disruption, decreasing slightly when conditions appeared to
improve (number of Conficker sources rose from 2 to 11).

To determine the reason behind the differences in γC and
the other two metrics, we broke down the traffic from AS577
by network prefix and inspected the TTL header fields in the
collected packets. In the 90 minutes surrounding the outage,
packets from AS577 originated from 63 distinct /16 prefixes,
of which 38 sent traffic in at least 9 of 18 5-minute time bins,
and all but one experienced a considerable volume drop. Upon
further inspection, two IP addresses in this prefix continued to
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Fig. 5: During the Bell-Dery routing leak of August 2012, we
observed traffic from AS577 during every 5-minute bin. The number
of Conficker and 3-SYN source IPs dropped drastically. Two of our
metrics, γ3 and η indicated packet loss, but the γC metric did not,
which we later discovered was because one network was unaffected
by the BGP leak.

transmit Conficker-like traffic at their pre-outage rate, depicted
in Figure 6.
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Since the Bell-Dery event was caused by a route leak, it is
possible to observe changes in the way packets were routed
by looking at the TTL value, reflecting a different number of
hops in the path to the telescope. We discovered that the only
two IP addresses whose packet rate at the telescope was not
affected by the disruption were also the only two IP addresses
whose packets carried a constant TTL both outside and during
the disruption (one such IP address depicted in top graph of
Figure 7). We suspect that traffic from this prefix was re-routed
through a different path that was unaffected by the route leak.

C. Libyan Internet Blackout

Our third case study applies our metrics to the Libyan
Internet blackout happened in February and March 2011, when
the Libyan government used BGP disconnection and later
packet filtering to implement nationwide censorship [8]. There
were three outages, lasting approximately 7 hours (the first
two) and 3.7 days (the last one). We examine the second one,
when the state telecom (AS21003) isolated most of the country
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or less) to accurately make inferences.

through packet filtering [8]. This case study illustrates that
our metrics effectively distinguish large-scale outages that are
characterized by some packet loss from those that are not.

Figure 8 shows that when a subset of hosts can communicate
through the filtering system, γC remains near pre-censorship
values, despite fewer sources sending traffic. Thus we can infer
that the outage was not caused by an event inducing network
packet loss. We excluded γ3 and η from this measurement,
since there were not enough hosts sending 3-packet SYN flows
to accurately infer anything from these metrics.

D. Utility of Metrics

In all three case studies, the metrics γ and η provided insight
into the nature of the outage. In the “Dodo-Telstra” case study,
network congestion preceded the complete outage. In response
to congestion, the network dropped packets, decreasing the
number of packets per flow, which reduced the values of γC
and γ3 and increased η. In the “Bell-Dery” case study, the
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metrics extracted from the Conficker signal implied network-
induced packet loss (e.g congestion). However, γC initially
painted a different picture of packet loss: sources able to send
Conficker-like traffic were unaffected. A deeper exploration
of traffic volume by prefix and TTLs revealed that the con-
nectivity disruption was more severe for some subnets than
others. This result demonstrated that multiple data classes and
metrics can strengthen the quality of inferences and provide a
starting point for further investigation. In the Libyan Internet
Blackout example, although the traffic volume was smaller,
γC remained at pre-censorship levels whenever Conficker-like
traffic was observed. This behavior is consistent with filtering
packets by subnet: the number of traffic sources decreases but
per-flow characteristics will not change.

V. CONCLUSION

To augment the binary signal of presence or absence of
traffic flows from a particular network, we explored IBR-
derived metrics that help characterize connectivity disruptions
that induce packet loss, e.g., link congestion. Our metrics are
based on SYN retransmits in unsolicited Internet background
radiation, visible from passive darknet instrumentation. Be-
cause these retransmits typically follow consistent patterns that
are a function of operating system or application implemen-
tation, we can infer packet loss if some retransmits are not
observed by the darknet.

We used three case studies to demonstrate that our γ
and η metrics can distinguish a transit bottleneck-induced
outage from an intentional nation-wide disconnection caused
by packet filtering. One unexpected finding was that in the
Bell-Dery route leak incident, different parts of the affected AS
reacted differently to the route leak, confirmed by examination
of TTL values on a per-prefix level. This analysis provided
hints on how to group parts of a specific AS into finer-grained
units that may be affected differently by a disruption.

Our method has several limitations: it only measures packet
loss between a given source and our darknet. It also relies
on the presence of Conficker-like or IBR TCP traffic in
general. But our simple metrics applied to a large darknet
traffic segment enable us to continually monitor one aspect of
network connectivity (i.e., reachability to our darknet) from
all over the world.

Our method is complementary to techniques using active
probes to discover outages. Due to the large number of
prospective IP addresses to probe, current active techniques
do not ensure that the outage will be captured. For example,
[23] only monitors /24s with a large number of responsive
IPs - which is about 9% of the allocated address space.
Alternatively, [24] covers 89% of the Internet’s edge address
space but the focus is on failures lasting longer than 15
minutes.

In the future we would like to test this metric on other
connectivity scenarios and other darknet traffic, explore other
IBR-related metrics that can characterize network disruptions,
and integrate such metrics into a system for comprehensive
detection and diagnosis of such disruptions.

VI. ACKNOWLEDGEMENTS

This material is based upon work supported by the National
Science Foundation under grants CNS-1059439 and CNS-
1228994. Support for the UCSD network telescope operations
and data collection, curation, analysis, and sharing is provided
by DHS cooperative agreement FA8750-12-2-0326, NSF grant
CNS-1059439, and UCSD.

REFERENCES

[1] A. Dainotti, R. Amman, E. Aben, and K. C. Claffy, “Extracting Benefit
from Harm: Using Malware Pollution to Analyze the Impact of Political
and Geophysical Events on the Internet,” SIGCOMM Comput. Commun.
Rev., 2012.

[2] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson, “Char-
acteristics of Internet Background Radiation,” in Internet Measurement
Conference (IMC 2004), 2004.

[3] E. Wustrow, M. Karir, M. Bailey, F. Jahanian, and G. Huston, “Internet
Background Radiation Revisited,” in Internet Measurement Conference
(IMC 2010), 2010.

[4] D. Moore, C. Shannon, and J. Brown, “Code-Red: a case study on
the spread and victims of an Internet worm,” in Internet Measurement
Workshop (IMW 2002), 2002.

[5] C. Shannon and D. Moore, “The Spread of the Witty Worm,” IEEE
Security and Privacy, 2004.

[6] D. Moore, C. Shannon, D. J. Brown, G. M. Voelker, and S. Savage,
“Inferring Internet Denial-of-Service Activity,” ACM Trans. Comput.
Syst., 2006.

[7] M. Casado, T. Garfinkel, W. Cui, V. Paxon, and S. Savage, “Opportunis-
tic Measurement: Spurious Network Events as a Light in the Darkness,”
in ACM Fourth Workshop on Hot Topics in Networks (HotNets-IV), 2005.

[8] A. Dainotti, C. Squarcella, E. Aben, K. C. Claffy, M. Chiesa, M. Russo,
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