
DRoP:DNS-based Router Positioning

Bradley Huffaker, Marina Fomenkov, kc claffy
{bradley,marina,kc}@caida.org

CAIDA, University of California, San Diego

ABSTRACT

In this paper we focus on geolocating Internet routers, using a

methodology for extracting and decoding geography-related strings

from fully qualified domain names (hostnames). We first compiled

an extensive dictionary associating geographic strings (e.g., airport

codes) with geophysical locations. We then searched a large set

of router hostnames for these strings, assuming each autonomous

naming domain uses geographic hints consistently within that do-

main. We used topology and performance data continually col-

lected by our global measurement infrastructure to discern whether

a given hint appears to co-locate different hostnames in which it

is found. Finally, we generalized geolocation hints into domain-

specific rule sets. We generated a total of 1,711 rules covering

1,398 different domains and validated them using domain-specific

ground truth we gathered for six domains. Unlike previous efforts

which relied on labor-intensive domain-specific manual analysis,

we automate our process for inferring the domain specific heuris-

tics, substantially advancing the state-of-the-art of methods for ge-

olocating Internet resources.

Keywords

router geolocation, DNS, Internet topology, active measurement

1. INTRODUCTION
Governments, researchers, and commercial entities share an in-

terest in mapping Internet resources to physical locations, a pro-

cess termed geolocation. Internet resources, e.g., routers and IP

addresses, can broadly be divided into those located topologically

inside the network and providing transit to those on the edge. Edge

(end) hosts are mostly clients and servers; knowledge of their loca-

tion supports a variety of uses, from tax and regulation enforcement

to advertising and nearest data center selection. Geolocation of

transit-providing routers helps to estimate redundancy and robust-

ness of critical infrastructure, diagnose and fix connectivity prob-

lems, and construct POP-level maps of the Internet [1, 2, 3].

Current geolocation techniques rely on three types of data: delay,

database, topology, or hostname heuristics. Delay-based methods

typically use delay measurements gathered from known sources to

hosts at known geographic landmarks to triangulate a target IP ad-

dress location [4, 5, 6]. Database-driven methods aggregate static

mapping information from public and private sources [7, 8]. Topol-

ogy inference methods assume that topologically close addresses

are also physically close [1, 9, 10]. Hostname heuristic techniques

use geographic hints encoded in domain names to infer locations of

associated IP addresses [11, 12].

These techniques involve non-trivial hurdles for anyone trying to

build and maintain an accurate geolocation service. Since private

databases are generally inaccessible, most users rely on third-party

(commercial) geolocation providers, which tend to focus resources

on accurate geolocation of edge nodes (end hosts) rather than tran-

sit routers, so their data sources and analysis methodologies are

typically best suited for inferring end host locations. But building

geographically accurate maps of the Internet requires geolocating

core routers, especially those belonging to large Internet Service

Providers (ISPs) with global infrastructure footprints. We therefore

seek ways to accurately and automatically infer router locations

from data that already exists or is easy to collect. In this study

we propose, test, and validate a method for inferring router loca-

tion that piggybacks on our existing extensive continuous Internet

IPv4 topology data collection and analysis. Specifically, we use

geographic information encoded in DNS hostnames of router inter-

faces and active measurement data obtained by probing those inter-

faces from multiple monitors distributed worldwide in the course

of producing our Internet Topology Data Kits (ITDK – [13]). We

limited ourselves to pre-existing data collections, but our results

suggest ways to optimize future operational measurement specifi-

cally to support accurate geolocation.

Many ISPs encode some kind of geographic information (“hints”)

into DNS mappings for their routers. Some router names may in-

clude standardized geographic indicators (i.e., airport codes or city

names), while others may use non-standard naming conventions

such as creative city abbreviations. Previous attempts to infer router

locations [11, 12] used hand-crafted rule sets that extracted and

decoded this geographic information from router hostnames, and

developed methods to detect stale geographic information in host-

names [14]. We investigate and evaluate a novel approach that may

be able to automate the process of finding domain-wide geographic

hints in hostnames, testing their validity using active probing mea-

surement data, and generalizing rules that map hints used by differ-

ent domains (organizations) to specific geographic locations.

Our approach is as follows. We first compiled an extensive dic-

tionary associating geographic hints (city names, abbreviations, air-

port codes, etc.) with specific locations (§2.1). We searched for

these potentially encoded geographic hints in a large set of router

hostnames extracted from a recent ITDK. We assume that each au-

tonomous second-level domain (e.g., above.net) uses geographic

hints consistently, but different second-level domains may repre-

sent geographic hints differently. We use latency and TTL mea-

surements captured by Ark monitors [15] (also as part of the exist-

ing ITDK measurements), to ascertain whether a given hint (string)

appears to co-locate different hostnames in which it is found, i.e.,

are the round-trip times (RTTs) and TTLs of packets arriving from

different hosts consistent with the two hostnames being co-located?

The rest of the paper describes the datasets we used (§2), our

methodology (§3), results and validation, (§4) and conclusions (§6).

2. DATASETS

2.1 Building a dictionary of location hints
By analyzing the naming conventions of three organizations who

shared them (ntt.net, cogentco.com, and belwue.de), emails from

operators describing geographic hints they use, a NANOG presen-

tation [16], and previous work [11, 12], we found five types of

commonly used geographic hints:

1, 2 Publicly available IATA and ICAO codes [17], used by the

airline industry to designate airports. Operators often label

routers using the code of the largest airport in the city where

a router is located.

3 CLLI (Common Language Location Identifier) codes [18],

developed by the North American telecommunications in-

dustry to precisely specify (possibly down to an individual

cabinet) location and function of telecommunication equip-

ment. Today operators typically use a truncated form that

encodes the city and country. The CLLI code database is

proprietary, trademarked and maintained by Telcordia.

4 UN/LOCODE (the United Nations Code for Trade and Trans-

port Locations) [19], developed and maintained by the UN

Economic Commission for Europe for use by the shipping

and manufacturing industry. It assigns codes to locations

used in trade and transport such as seaports, rail and road

terminals, airports, post offices and border crossing points.

The 2011 version contains codes for about 82,000 locations.

A few Internet operators prefer to use the more complete

UN/LOCODE database rather than the IATA codes.

5 Finally, some operators use city names.

Geographic names (or hints) may be ambiguous; for example,

the same geohint could mean different cities: Moscow in Russia

or in Idaho. Therefore, we include mappings for each geographic

string to all possible corresponding coordinates we could find.

We first populated our dictionary with location names extracted

from GeoNames [20], a public database with over 8M place names

and corresponding {lat,long} coordinates. We downloaded their

daily dump from 1 August 2013. For each P-type entry1, we con-

verted all alternative names listed in the database to ASCII, re-

moved all non-alphabetic characters (e.g., converted “san diego” to

“sandiego”) and stored the resulting string-coordinate pairs in our

dictionary. For multi-part names, we added an entry with only the

longest part of the name (i.e., “diego” for “san diego”). Finally, for

each hint, we designated the coordinates with the largest population

as the major city.

Next we incorporated into the dictionary IATA and ICAO air-

port codes listed in Wikipedia [17], which unfortunately includes

only city and airport names, not the corresponding coordinates. We

found the (lat,long) coordinates for 62% of airports in the Open-

flight database [21], mapped 19% of the airports to cities in GeoN-

ames and used their coordinates, and looked up the remaining 19%

using Google’s Maps API [22]. We generated a single dictionary

entry for each IATA or ICAO airport code.

Currently, there is no public dataset for the CLLI codes. We com-

piled a small subset of CLLI codes from various sources, and tied

city names to geographic coordinates via the GeoName database.

1A P-type entry names a city, village, or other populated place,
rather than another geographic object such as a lake or mountain.

Finally, we added the character strings from the UN/LOCODE

list [19], which includes geographic coordinates.

As an example of the extensive coverage compiled into the re-

sulting dictionary, the following hints – sandiego, diego, san (IATA),

ksan (IACO), sndgca (CLLI), ussan (UN/LOCODE), and additional

spellings provided by geonames (sandiegas, diegas, sandiegu, diegu,

sandieqo, dieqo, sandijego, dijego, sandiyego, and diyego) all con-

nect to a single geographical location “San Diego, CA, US”.

Table 1 shows the composition of our dictionary. The character

strings of major cities constitute the bulk of entries (78%), followed

by the LOCODE strings (19%), and by IATA codes (1.1%). Since

we did not have access to the Telcordia database, the number of

CLLI codes in our dictionary is miniscule.

2.2 Routers and hostnames in CAIDA’s ITDK
To develop and test our methodology, we needed a set of routers

to try to geolocate. We used the set of Internet routers inferred

from Ark traceroute data [23] and collated in the July 2013 Internet

Topology Data Kit (ITDK). Ark monitors around the world con-

tinuously collect traceroutes to randomly selected IP addresses in

every routed /24 IPv4 prefix; in parallel a host at CAIDA performs

a reverse DNS lookup for every observed IP address, storing the re-

sults in a database. The ITDK is a series of heavily curated data sets

derived from 3-week windows of traceroute measurements gath-

ered from CAIDA’s active measurement infrastructure Archipelago

(Ark). For each ITDK, CAIDA conducts alias resolution using the

best available tools [24, 25] to estimate which IPv4 addresses be-

long to the same physical routers (called “nodes” in the ITDK).

Even with state-of-the-art tools, alias resolution at Internet scale

is a complex and challenging process; the resulting router-level

graph is incomplete and has analytic artifacts that are difficult to

quantify and filter [26]. For example, the number of inferred nodes

depends not only on the comprehensiveness and accuracy of alias

resolution, but also on the conditions of data collection: how many

non-responding intermediate hops and responding destinations ob-

served. (Any responding destination could be a router.) Further-

more, the ITDK router-level graph is a hypergraph, i.e., we infer

many routers to be interconnected by the same link, which may be

due to MPLS, inadequate alias resolution, topology changes during

data collection, or non-responding hops distorting the graph.

The ITDK curation process replaces non-responding hops (de-

noted by * in traceroute data) between two known IPv4 addresses

with provisional placeholder nodes in order to maintain knowledge

of connectivity between these two addresses. If a known interface

has N placeholders as immediate neighbors, they could all be the

same interface, or N different interfaces (or anything in between).

These placeholder hops propagate into the router-level graph, in-

flating its size and creating “shadowy” nodes: inferred routers with

all interfaces unknown. In the July 2013 ITDK data, 66.5% of in-

ferred nodes (31.8M) have at least one known IPv4 interface, the

remaining 33.5% (16M) contain only placeholder interfaces.

The ITDK also includes a file listing DNS hostnames (if they

exist) for intermediate nodes; we augment this list with available

hostnames for destination nodes using CAIDA’s internal database

that stores reverse DNS lookups for every traceroute-observed IP

address. We then construct a file that lists the hostnames for the

ITDK nodes (i.e., routers) for which at least one interface had a

hostname mapping. We use this subset of 18.9M nodes with 18.5M

associated hostnames to test our geolocation methodology. Most

(99.9%) hostnames map to one interface, but some hostnames map

to multiple IPv4 addresses, for a variety of reasons, including host-

names changing during the measurement window, or DNS-based

load balancing and server selection methods.

airport telco United Nation population

IATA ICAO CLLI LOCODE major city

number of hints 7,622 1.1% 6,402 0.9% 121 0.0% 134,106 19.5% 540,223 78.5%

Table 1: Number and percentage of entries in our dictionary of geographic hints contributed by different sources.

2.3 Latency and TTL measurements
Geographic information encoded in a router’s hostname can ap-

pear conflicting, ambiguous, or invalid. For example, the hostname

ccr21.par01.atlas.cogentco.com contains three potentially location-

related strings: ccr (airport code for Concord, CA), par (Paris,

France or one of the 20 towns named Paris in the USA), and at-

las (part of the city name Salas Atlas, Spain). We use latency

and TTL measurements gathered operationally by Archipelago to

help resolve such ambiguities. (One motivation for this study was

our intent to include the locations of ITDK routers as an additional

component of this data kit.)

Each IP address observed in Ark traces has associated Round

Trip Time (RTT) and Time-To-Live (TTL) values from reply pack-

ets arriving at Ark monitors that sent probes to this address. From

the TTL values in those replies, we can infer the hop count, i.e.,

path length or number of routers between a given monitor and the

router it probes. We use RTTs and hop counts as location resolvers

because for a given Ark monitor, we assume that it should take

roughly the same amount of time and the same number of hops to

travel to routers located in the same place.

For each {Ark monitor, router} pair, we computed: (1) the min-

imum RTT measured between this monitor and any interface on

this router it probed, and (2) the average TTL in the reply packets

from any interface on this router arriving at this monitor. The RTT

primarily depends on the geographic distance between the moni-

tor and the router, as well as congestion conditions along the path;

we use the minimum RTT to reduce the impact of congestion on

our analysis. The observed TTL value depends on the initial TTL

value set by the router when it created the response packet (differ-

ent routers use different values, see Figure 1); because most routers

decrement the TTL field, the ending TTL value reflects the approx-

imate number of routers between the probed router and the Ark

monitor. We stored the pairs of values {min RTT , av TTL} in

a database and used them to construct a distance vector between

each router in the ITDK and the Ark monitors that probed any in-

terface(s) on that router.

3. METHODOLOGY
We designed a four-step methodology to infer DNS hostname

heuristics that use common geographic naming conventions. First,

we divide hostnames into groups sharing a common Public Suf-

fix (as defined in Mozilla’s Public Suffix List [27]), assuming such

hostnames belong to the same organization and utilize a common

naming convention. We derive a geohint for each geographic hint

we find at the same place in hostnames with a common suffix (§3.1).

Second, for each geohint, we construct a 4-dimensional vector of

values (§ 3.2) computed from minimum RTTs and average TTLs

between CAIDA’s Ark monitors and the routers associated with this

geohint. Third, we (use ground truth to) train a classifier and use it

to determine whether the remaining geohints are likely valid (§3.3).

Finally, we combine valid geohints into more general rules describ-

ing the position and type of geographic hint found in each public

suffix’s hostnames (§3.4).

3.1 Creating router sets and geohints
For hostnames with the same public suffix, we search for strings

hostname ccr21. par01. atlas. cogentco.com

position 2 1 0

hint ccr par atlas

location | | Salas Atlas, ES

| Paris, FR

Concord, CA

Table 2: Extracting geographic hints from a hostname.

elements

geohint public suffix hint+position
geographic

coordinates

Table 3: A geohint is a unique combination of a geographic

hint, a public suffix, a hint’s position in a hostname, and a

lat/long pair.

that could be geographic hints located in the same position in the

hostname. Only 3.6M of nearly 19M nodes with DNS mappings

in the July 2013 ITDK data have apparent geographic hints in their

DNS names.

Table 2 illustrates the concept of position. We strip the common

public suffix part of the name, split the remainder into substrings

(truncating non-alphabetic characters), and count the distance from

each substring to the stripped suffix part of the hostname. For ex-

ample, in Table 2 the substring ccr is in position 2 and the substring

par is in position 1. We then search our dictionary (§2.1) for geo-

graphic hints we extracted from hostnames, similar to the technique

used in [11]. If an observed substring is in our dictionary, then we

include the router containing this hostname into a corresponding

router set, defined as a group of routers that share the same public

suffix and have the same geographic hint encoded in the same po-

sition in at least one of the hostnames of their interfaces. In other

words, a router set is defined by three parameters: [public suffix,

substring, substring position]. Thus, the router with the interface

name shown in Table 2 will be a member of at least three router sets

(possibly more, depending on the composition of hostnames of its

other interfaces): [cogentco.com, ccr, position 2], [cogentco.com,

par, position 1], and [cogentco.com, atlas, position 0].

Each substring found in our dictionary may map to multiple

physical locations, e.g., paris may be Paris, France, or one of the

20 towns named Paris in the USA. For each router set we create

as many geohints as there are possible geographical locations for

the substring defining this router set (Table 3). In other words, a

geohint is a unique combination of a geographic hint (potentially

location-related string of characters), a particular public suffix, spe-

cific position in hostname, and specific geographic coordinates (lat-

itude/longitude pair). For example, the hint diego found in the third

position in the hostnames with public suffix as2116.net would pro-

duce two geohints: [as2116.net, diego, 3, San Diego USA] and

[as2116.net, diego, 3, Diego Martin Tobago].

3.2 Testing geohints with RTT/TTL data
We use available active measurement data to test whether a given

geohint is likely to accurately map its router set to the correct lo-

cation. We create a 4-dimensional vector derived from Ark probes

sent to the interfaces of all routers in the set as follows.

0 50 100 150 200 250

TTL values

0

0.25

0.5

0.75

1

fr
a
c
ti

o
n

o
f

m
e
a
s
u
re

m
e
n
ts

44-64 104-124 235-255

37%

2%

47%

Figure 1: CDF of TTL values found in reply packets. Y-axis

shows fraction of TTL values within 20 hops of each initial

value of 64 (37%), 128 (2%), or 255 (47%). The union of these

ranges covers 86% of TTL values.

First, we compute the mean and standard deviation of minimum

RTTs observed between a given Ark monitor and all interfaces this

monitor probed in this router set. To remove possible bias due to the

RTT long tail distribution [28], we filter out values larger than the

mean plus three standard deviations, and recalculate the new mean

min RTT and its standard deviation. The latter is one component

of the classifying 4-D vector.

Next, we use min RTT to estimate the expected signal propa-

gation speed between the known location of the Ark monitor and

the coordinates of each possible geohint associated with this router

set. Given the dynamic nature of the underlying network, we do

not attempt to estimate the correct current speed in the network,

but rather use the measurements to teach our classifier the correct

range of values. Therefore, we compute the average propagation

speed from Ark monitors that observed any router in this router set,

and its standard deviation, making these two values components of

our classifying 4-D vector. We automatically reject geohints when

the estimated speed exceeds the speed of light.

Finally, we analyze the hop count of paths from each Ark mon-

itor to routers in a router set. A given router sets the same initial

TTL value in all outgoing packets, and we can calculate the hop

count by subtracting the TTL value observed in the collected reply

packet from the initial TTL. Although different routers in the same

geographic location may have different initial TTLs, the distance in

hops between that router and a given Ark monitor is relatively sta-

ble. In the July 2013 ITDK, 86% of the observed TTL values are

within 20 hops of 64, 128, or 255 (Figure 1). Since more than 75%

of paths observed by Ark monitors are fewer than 20 hops [29], we

infer the smallest possible hop count given one of these three initial

TTL values.

Although 86% of probed routers are within 20 hops of 64, 128,

and 255 values, nearly 14% are not. To minimize distortions of

estimated hop distances due to incorrectly inferred initial TTL val-

ues, we use a similar method that we used to remove outliers in

latency values: we calculate the mean and the standard deviation of

hop counts observed by a given Ark monitor in packets returning

from all interfaces in the router set that it probed, discard values

larger than the mean plus three standard deviations, and recalculate

the new mean and standard deviation from the remaining values.

The average standard deviation of hop count distance across the

monitors is the last component of our classifying 4-D vector.

To summarize, the resulting 4-dimensional classifying vector for

each geohint associated with a given router set consists of: the

mean and standard deviation of estimated signal propagation speeds

for all routers in this set across all Ark monitors that probed them;

average standard deviation of RTTs to all routers in the set from all

Ark monitors; and average standard deviation of hop count distance

to all routers in the set from all Ark monitors.

3.3 Classifying geohint validity
Our next step is to evaluate which geohints are valid, i.e., sta-

tistically likely to point to a correct location. We used hostnames

from six public suffixes for which we have ground truth data on

hostname construction heuristics (see §4) to train Weka 3’s REP-

Tree [30] classifier with 10-fold cross-validation. We implemented

the resulting classifier decision tree and classified each geohint as

likely valid or not. We found that the two components of the 4-

D vectors predominantly used for classification were the standard

deviation of RTT and the standard deviation of estimated signal

propagation speed.

3.4 Building general geolocation rules
Rather than reporting the result of the classifier directly (e.g.,

the geohint [above.net, SAN, 2] indicates above.net routers in San

Diego, CA), we combined related geohints to infer more general

rules. For example, we surmise that if the following geohints are

valid: [above.net, SAN, 2] ⇒ San Diego, CA; [above.net, PAR, 2]

⇒ Paris, France; and [above.net, LAX, 2] ⇒ Los Angeles, CA, then

there is likely a general rule: hostnames used on above.net routers

encode location using the IATA airport codes in the second position

of the hostname: [above.net, <IATA>, 2].

To derive general rules, for each public suffix, we calculate the

fraction of likely valid geohints that share the same type and posi-

tion. If more than 60% of such geohints are likely valid, then we

create a rule for that public suffix with the given type and position.

We then check for conflicts between generated rules, i.e., two

rules that both match at least one hostname but infer different ge-

ographic locations, and reject the rule matching fewer hostnames.

We discarded 6.47% of rules because of conflicts.

In total, we generated 1,711 general inference rules covering

1,398 domains. Of those, 1,126 domains matched one rule, 235

domains matched two rules, 33 matched three rules, and 4 do-

mains matched four rules.

General rules allow us not only to match specific hints (SAN,

PAR, LAX in the example above), but also to geolocate other routers

similarly named (e.g., using IATA codes in the example above),

even if we only encounter their names once and thus lack sufficient

probe data for meaningful RTT and TTL statistics. General rules

also incorporate measurements across geohints, increasing our con-

fidence in the resulting inferences. Perhaps most importantly, gen-

eral rules are less likely to become stale over time.

4. RESULTS AND VALIDATION
We obtained ground truth from operators responsible for 6 pub-

lic suffixes who shared their router naming schemes: akamai.com,

belwue.de, cogentco.com, digitalwest.net, ntt.net, and peak10.net.

We used these data to train our classifier (see §3.3), to optimize

constraints on active measurement data used for resolving geohint

ambiguities, and to validate our results.

4.1 Constraining active measurement data
In order to optimize the use of measurement data and filter out

statistically unreliable cases from analysis, we tested all possible

combination of constraints on our measurement data. We ran clas-

sifiers for all sets of 4-D vectors obtained by varying between 1 and

5: (a) the minimum number of probes from a given Ark monitor to

minimum number inferences

rank measurements monitors boundary correct total accuracy

1 2 2 3 16,142 16,270 99.2%

2 4 4 3 16,113 16,270 99.0%

3 4 4 4 16,113 16,270 99.0%

46 4 1 2 4,377 16,270 26.9%

47 4 2 4 4,334 16,100 26.9%

48 4 2 2 4,330 16,100 26.9%

Table 4: Three best and three worst sets of constraints on active measurement data used for geolocation, ranked by the number of

routers with correctly inferred geographic hints. or correctly inferred to contain no geographic hint.

source number of hints used hints matched hostnames

major city 540,223 78.5% 3,392 59.1% 745,052 20.6%

IATA 7,622 1.1% 2,189 38.2% 698,741 19.3%

CLLI 121 0.0% 94 1.6% 632,810 17.5%

LOCODE 134,106 19.5% 42 0.7% 4,623 0.1%

ICAO 6,402 0.9% 18 0.3% 264 0.0%

none* 1,535,503 42.5%

total 688,474 100% 5,735 100% 3,616,993 100%

* none is the hostnames with a geographic hint that matched no rule

Table 5: For each source of possibly meaningful geographically strings (hints), we provide the number of entries in our dictionary,

the number of entries used by at least one geolocating rule, and the number of hostnames that matched one of the rules produced

for this source. The “none” row shows the number of hostnames that appeared to contain geographic hint(s), but did not match any

geolocation rule.

constraint nodes fraction

number of nodes 31,790K 100.0%

with hostnames 18,956K 59.6%

with one hostname 18,890K 99.6%

with geographic hint 3,617K 19.1%

with 2+ probes 1,225K 3.9%

with 2+ monitors 920K 75.1%

with geographic hint 232K 25.2%

Table 6: ITDK (July 2013) nodes matching a given constraint.

59.6% of the nodes have at least one hostname, 20.6% of which

contain a geographic hint. 3.9% of nodes were probed at least

two times by at least one Ark monitor, of which 52.4% had at

least two probes from at least two monitors; of this latter subset

of 920K nodes, 25.2% (232K) had at least one geographic hint

in one of their hostnames.

a given router (used to compute min RTT and av TTL); and (b)

the minimum number of Ark monitors probing routers in a given

router set. We also experimented with different boundaries for re-

jecting outliers in RTT and hop counts: 2σ, 3σ, and 4σ. Table 4

shows the three best and three worst sets of constraints ranked by

the number of correct inferences they created for our ground truth

data set. Over 27% of combinations had an accuracy around 99%.

Thus, we selected a minimum threshold of 2 Ark monitors which

each received 2 replies from a given router set2 and the 3σ rule to

discard the outliers. Table 6 shows the number of nodes in our data

set matching various constraints.

2For a data set containing only two values, the standard deviation
is just the difference between either number and the average.

4.2 Hostnames matching the rules
Table 5 illustrates the representativeness of our dictionary of ge-

ographic hints in the pool of analyzed hostnames. For the five

sources of geographic strings in our dictionary, we show the num-

bers of: entries in the dictionary; entries used by at least one geolo-

cation rule; and hostnames that matched a rule using this source.

The character strings of major cities constitute the bulk of entries in

the dictionary (540,223, or 78.4%). Although only 3,392 entries of

this type were used by any rules, they produced the majority of use-

ful hints (59.1%) geolocating 745,052 hostnames (20.5% of host-

names in the July 2013 ITDK data that appeared to have geographic

hints). The dictionary contains 7,622 hints from IATA airport codes

(1.1% of its entries). Of these, 2,189 were used by at least one

rule, comprising 38.1% of all hints used by a generated geolocation

rule. In the final classification, we geolocated 698,741 hostnames

(19.3%) with IATA-based rules. Despite having only a miniscule

number of CLLI codes in the dictionary (121 or 0.0175%), 94 of

them were used in classifying rules, and helped geolocate nearly

632,810 hostnames (17.4% of hostnames with hints)3. Finally, both

UN/LOCODE and ICAO hints are rarely used, helping to classify

only 0.127% and 0.00729% of hostnames. Out of 3,616,616 host-

names in the July 2013 ITDK that appeared to have a geographic

hint and therefore were potentially suitable for geolocation by our

method, we could not find geolocation rules for 1,535,535 (42.4%,

designated as ”none” in Table 5). Of the 3,244 corresponding do-

mains, we classified 1,398 (43.1%) using 1,711 rules. It is possible

that some of the unclassifiable hostnames/domains belong to edge

organizations who do not encode geographic information into their

hostnames (the apparent hints are false), some belong to organi-

zations who use in-house naming conventions, and we might have

missed or misinterpreted some correct geographic inferences.

3Our dictionary might benefit from Telcordia’s proprietary CLLI
code database, but then we could not share the dictionary.

domain type positive negative number of

true false true false hostnames

akamai.com 0% 100% 170

0% 0% 100% 0%

belwue.de city name 52% 48% 161

86% 14% 99% 1%

cogentco.com IATA 90% 10% 13,129

99% 1% 100% 0%

digitalwest.net IATA 49% 51% 111

100% 0% 98% 2%

ntt.net CLLI 96% 4% 2,584

100% 0% 100% 0%

peak10.net IATA 100% 0% 115

100% 0% 0% 0%

–total– 90% 10% 16,270

99% 1% 100% 0%

Table 7: Comparing DRoP’s results with ground truth data. “positive” means that we found a geographic hint, “true positive” means

that we correctly placed this router within 10 km of its actual location, “false positive” means that we mapped the hint to a wrong

location. “negative” means that no geographic hint was found, “true negative” means that operators told us these hostnames has no

geographic hint; “false negative” means we failed to recognize a geographic hint.

belwue cogentco digitalwest ntt peak10
0

20

40

60

80

100

p
er

ce
n
ta

g
e

o
f

h
o
st

n
am

es
 w

it
h
 g

eo
g
ra

p
h
ic

 h
in

ts

false
true

no
answer

no
answer

drop geolite netacuity sarang undns undns.sarang
false
true

Figure 2: Validation results. To compare against Netacuity and

Geolite, we limit this plot to hostnames that encode validated

geographic locations, and to allow databases to agree on the lo-

cation of cities with the same name we relaxed the agreement

threshold from 10 km to 40 km. For these hostnames, our al-

gorithm provided the right answer in 99% of cases. Excluding

belwue.de, we got 100%. Netacuity was the most successful ex-

isting solution with 81%. Geolite correctly geolocated 12% of

the hostnames.

4.3 Validating inferences for specific domains
Table 7 and Figure 2 present the results of validation. In Table 7

the top line of each domain’s row shows what fraction of this do-

main’s hostnames we inferred to contain (“positive”) or not contain

(“negative”) geographic hints. The bottom line of each row shows:

the fraction of those hostnames with recognized hints that matched

(“true positive”) or did not match (“false positive”) the actual loca-

tion of the hostnames according to our ground truth data, and the

fraction of those hostnames where our algorithm did not recognize

hints and operators confirmed there was no hint (“true negative”),

or where we missed an actual hint (“false negative”).

Not all hostnames in the July 2013 ITDK matched the naming

schemas provided by the operators. First, some non-matching host-

names belonged to end hosts rather than routers. Second, our de-

scriptions of naming conventions may be incomplete. Since most

non-matching names do not contain any geographic hints, in Ta-

ble 7 they contribute to “false positives”: our rules suggest a geo-

graphic location for those hostnames, but we do not really know.

Akamai operators informed us how they use IATA codes in their

router names, but our data contained no hostnames that matched

their naming convention. Our algorithm correctly did not infer any

rules for akamai.com, resulting in 100 true negative answers.

For all domains where our code inferred a geographic location,

it was correct 94% of the time. The largest ground truth set from

cogentco.com, containing 80% of the hostnames in our ground truth

data, had a success rate of 99%. Routers of digitalwest.net, ntt.net,

and peak10.net we geolocated with over 100% success rates when

their hostnames contained geographic hints.

Figure 2 compares the success rate of our algorithm (black bars,

labeled drop in the legend) with geolocation results from Max-

mind’s freely available Geolite database, Digital Envoy’s Netacuity

database, and iPlane’s undns and sarang tools [31]4. Geolite and

Netacuity directly map IP addresses to geographic coordinates, but

undns (and sometimes sarang) maps to geographic names. For uni-

form comparison, we mapped these names to coordinates and con-

sidered anything within 40 km to map to the same location. (We

expanded the threshold defining the same location from 10 km to

40 km in order for the databases to agree on locations with the

same name.) Figure 2 shows that no geolocation method provided

answers for all hostnames; the height of each colored bar indicates

the fraction of queried hostnames for which this method provided

an answer. The lower, solid, part of each bar represents the frac-

tion of hostnames correctly geolocated by this method; the upper,

lighter, area of each bar represents the fraction of queried host-

names that the method geolocated more than 40 km away from the

correct location, i.e., it failed. Figure 2 does not include hostnames

that did not match the naming schemas provided by the operators

(“false positives” in Table 7), since their true location is unknown.

Our algorithm correctly geolocated almost 99% of the hostnames

for which we have ground truth (almost 100% if we exclude bel-

4Geolocation providers Akamai and Quova refused to sell us their
services for evaluation.

wue.de which uses German strings in hostnames). Netacuity per-

formed surprisingly well for all seven ground truth domains: an

81% success rate. In contrast, Geolite correctly geolocated only

12% of hostnames; this geolocation provider focuses on end hosts

rather than routers. (Its commercial version of the database may

perform better at geolocating routers.) sarang alone was worse

than undns alone, with 65% and 83% success rates, respectively;

combining these related tools as in [9] (and discarding conflicting

cases) yielded a success rate of 84%.

We also tested our ability to use ground truth from four of these

domains to accurately train the classifier for the remaining domain

not used for training. When the excluded domain was belwue.de,

the rate of true positive answers for this domain increased from

86% to 92%. In all other cases, the accuracy values shown in Ta-

ble 7 dropped by less then 1% on average, providing additional

confidence in our results.

5. SUMMARY OF ALGORITHM STEPS
To summarize, our algorithm involves creating two baseline data

sets and four analysis processes. The first baseline data set is a dic-

tionary of geographic hints culled from a variety of public sources

(§2.1). The second is a collection of hostnames, and RTT and TTL

values compiled from ITDK and raw Ark data (§2.2, §2.3). The

four analysis processes are:

1. Construct geohints for hostnames that share public suffix,

hint, and hint’s position (§3.1)

(a) Group hostnames based on a common public suffix.

(b) Remove the public suffix, and break the remainder of

the hostname into substrings of consecutive letters. As-

sign a position to each substring counting leftward.

(c) Search these substrings for geographic hints.

(d) Group routers with the same public suffix and the same

geographic hint encoded in the same position in at least

one of the hostnames of their interfaces into router sets.

(e) For each router set create as many geohints as there are

possible geographical locations for the substring defin-

ing this router set.

2. Create a 4-dimensional vector of active measurement data for

each geohint (§3.2)

(a) Find the mean and the standard deviation of min RTT s

observed between a given Ark monitor and all inter-

faces that this monitor probed in this router set: min RTT

and σmin RTT , discard 3σ-outliers, recalculate min RTT

and σmin RTT .

(b) Using min RTT , calculate the expected signal propa-

gation speed s between the known location of the Ark

monitor and the supposed location of the geohint.

(c) Find the average speed s̄ across all Ark monitors and

its standard deviation σs.

(d) Using the observed av TTL and inferred initial TTL

value, infer the smallest possible positive hop counts

between a given Ark monitor and all interfaces that this

monitor probed in this router set.

(e) Find the mean and standard deviation of hop counts to

all routers in this router set from all Ark monitors: h̄

and σh, discard 3σ-outliers, recalculate h̄ and σh.

(f) For each geohint create a vector containing the follow-

ing values: {s̄, σs, σmin RTT , σh}.

3. Classify geohint validity (§3.3)

(a) Use the ground truth available from the operators of

eight public suffixes and 20% of hostnames in those

suffixes to create a training set.

(b) With training set, create classifier of geohint validity

likelihood.

(c) Use classifier to evaluate validity of each geohint.

4. Derive general geolocation rules (§3.4)

(a) For each public suffix, combine classified geohints into

a single rule under the following conditions: they share

the same geographic hint type, its position in hostnames,

and more than 60% of them are classified as likely valid.

(b) If two rules provide conflicting locations for the same

hostname, reject the rule matching fewer hostnames.

6. CONCLUSIONS
We have advanced the state-of-the-art in scalable methods for

accurately inferring the geographic location of Internet resources.

We developed an automated process of finding geography-related

strings in DNS hostnames and creating domain-specific rules for

mapping such strings to actual locations.

First, we built an extensive dictionary of geographic strings and

mapped them to all likely geographic coordinates. Next, we searched

for those strings in observed router hostnames, and corroborated

our inferences using active measurement data collected by Ark mon-

itors. Specifically, we checked whether routers that apparently shared

the same geographic string in their DNS mappings also had similar

RTT values, hop counts, and estimated signal propagation speed

from the same set of Ark monitors. Small variations in RTT and

hop counts provided additional corroboration that routers were co-

located, while small variations in propagation speed provided evi-

dence that routers were in their inferred location.

Our method automatically generalizes inferences that yield map-

pings of hostnames to physical locations consistent with observed

network performance characteristics into domain-specific rule sets.

We resolve conflicting rules, i.e., different rules that infer different

geographic locations for the same hostname, in favor of the rule

that correctly places the most routers.

We generated a total of 1,711 rules covering 1,398 different do-

mains and validated them using domain-specific ground truth about

DNS naming policy we gathered for six domains. For the one pub-

lic suffix that used both standard and non-standard hints, we cor-

rectly inferred the locations of only 86% of its hostnames, reducing

our average overall accuracy from nearly 100% to 99% (Table 7).

Since our automated process relies on standard names compiled

into our geographic string dictionary, we cannot infer the locations

of routers with non-standard names by this method. We would

like to explore the possibility of reverse engineering non-standard

names used by some operators by integrating other geolocation ap-

proaches [5, 1], to search hostnames that share both a domain and a

PoP for geographic hints they might also share. Another improve-

ment would integrate techniques for detecting stale geographic in-

formation using inconsistencies in traceroutes [14].

In future ITDK data collections, we may conduct additional mea-

surements aimed to increase the number of nodes that can be in-

cluded in the training and classification sets for geolocating ITDK

routers. We also hope to use DNS-based location inference tech-

niques to cross-validate our IP alias resolution methods.

Acknowledgments

We would like to thank the operators who provided us with the

ground truth, without which this work would not have been pos-

sible. The work was supported by U.S. NSF grant CNS-0958547,

DHS S&T Cyber Security Division contract N66001-12-C-0130,

and by Defence Research and Development Canada (DRDC) pur-

suant to an Agreement between the U.S. and Canadian govern-

ments for Cooperation in Science and Technology for Critical In-

frastructure Protection and Border Security. This material repre-

sents the position of the authors and not of NSF, DHS, or DRDC.

7. REFERENCES
[1] D. Feldman and Y. Shavitt and N. Zilberman, “A structural

approach for PoP geo-location,” in Computer Networks,

2012.

[2] H. Madhyastha and T. Isdal and M. Piatek and C. Dixon and

T. Anderson and A. Krishnamurthy and A. Venkataramani.,

“iPlane: An Information Plane for Distributed Services,” in

OSDI 2006, 2006.

[3] K. Yoshida and Y. Kickuchi and M. Yamamoto and Y. Fujii

and K. Nagami and I. Nakagawa and H. Esaki, “Inferring

POP-Level ISP Topology through End-to-End Delay

Measurement,” in PAM 2009, 2009.

[4] M. Arif, S. Karunasekera, S. Kulkarni, A. Gunatilaka, and

B. Ristic, “Internet Host Geolocation Using Maximum

Likelihood Estimation Technique,” in AINA ’10: IEEE

International Conference on Advanced Information

Networking and Applications, 2010.

[5] B. Eriksson and P. Barford and B. Maggs and R. Nowak,

“Posit: A Lightweight Approach for IP Geolocation,” in

ACM SIGMETRICS Performance Evaluation Review, Sept

2012.

[6] Y. Wang, D. Burgener, M. Flores, A. Kuzmanovic, and

C. Huang, “Towards street-level client-independent ip

geolocation,” in USENIX NSDI, March 2011.

[7] C. Guo, Y. Liu, W. Shen, H. Wang, Q. Yu, and Y. Zhang,

“Mining the Web and the Internet for Accurate IP Address

Geolocations,” in IEEE INFOCOM, 2009.

[8] D. Moore, R. Periakaruppan, J. Donohoe, and K. Claffy,

“Where in the World is netgeo.caida.org?,” in INET’00:

Annual Internet Society Conference, 2000.

[9] E. Katz-Bassett, J. John, A. Krishnamurthy, D. Wetherall,

T. Anderson, and Y. Chawathe, “Towards IP geolocation

using delay and topology measurements,” in ACM

SIGCOMM Internet Measurement Conference, 2006.

[10] S. Laki, P. Mátray, P. Hága, I. Csabai, and G. Vattay, “A

Model Based Approach for Improving Router Geolocation,”

Computer Networks, vol. 54, no. 9, 2010.

[11] J. Chabarek and P. Barford, “What’s in a Name? Decoding

Router Interface Names,” in ACM HotPlanet, Auugust 2013.

[12] N. Spring and R. Mahajan and D. Wetherall, “Measuring ISP

topologies with Rocketfuel,” in ACM SIGCOMM, 2002.

[13] “dataset:Internet Topology Data Kit (ITDK),” July 2013.

http://www.caida.org/data/active/

internet-topology-data-kit/.

[14] M. Zhang and Y. Ruan, “How dns misnaming distorts

internet topology mapping,” in In USENIX Annual Technical

Conference, 2006.

[15] “dataset:Archipelago Measurement Infrastructure (ark),”

July 2013.

http://www.caida.org/projects/ark/.
[16] “A Practical Guide to (Correctly) Troubleshooting with

Traceroute,” August 2013. http://www.nanog.org/

meetings/nanog45/presentations/Sunday/

RAS_traceroute_N45.pdf.

[17] “dataset:Wikipedia’s page on airport codes,” August 2013.

http://wikipedia.org/wiki/Airport_code/.

[18] “Common Language Location Identifier (CLLI) code,”

http://en.wikipedia.org/wiki/CLLI_code.

[19] “dataset:UN/LOCODE Code List,” August 2013.

http://www.unece.org/cefact/locode/

service/location.html.

[20] “dataset:GeoNames,” August 2013.

http://www.geonames.org/.

[21] “dataset:OpenFlights,” August 2013.

http://openflights.org/data.html.

[22] “dataset:Google Maps,” August 2013.

http://maps.googleapis.com/maps/api/

geocode/json?sensor=false&address=.

[23] “Ark IPv4 Routed /24 Topology Dataset.”

http://www.caida.org/data/active/ipv4_

routed_24_topology_dataset.xml.

[24] “iffinder Alias Resolution Tool,” 2012. http://www.

caida.org/tools/measurement/iffinder/.

[25] K. Keys, Y. Hyun, M. Luckie, and k. claffy, “Internet-Scale

IPv4 Alias Resolution with MIDAR,” IEEE/ACM

Transactions on Networking, vol. 21, Apr 2013.

[26] B. Huffaker and M. Fomenkov and k. claffy, “Internet

Topology Data Comparison ,” tech. rep., Cooperative

Association for Internet Data Analysis (CAIDA), 2012.

[27] “Mozilla’s public suffic list.”

http://publicsuffix.org.

[28] A. Acharya and J. Saltz, “A study of Internet round-trip

delay,” in Technical report, University of Maryland, 1997.

[29] “Summary statistics for all archipelago monitors.”

http://www.caida.org/projects/ark/

statistics/all_monitors.xml#pathlens.

[30] “Weka 3.”

http://www.cs.waikato.ac.nz/ml/weka/.

[31] “sarang.” http://iplane.cs.washington.edu/

data/sarang.tgz.

