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An IP darkspace is a globally routed IP address space with no active hosts.
All traffic destined to darkspace addresses is unsolicited and often originates from
network scanning or attacks. A sudden increases of different types of darkspace
traffic can serve as indicator of new vulnerabilities, misconfigurations or large
scale attacks. In our analysis we take advantage of the fact that darkspace traffic
typically originates from processes that use randomly chosen addresses or ports
(e.g. scanning) or target a specific address or port (e.g. DDoS, worm spreading).
These behaviors induce a concentration or dispersion in feature distributions
of the resulting traffic aggregate and can be distinguished using entropy as a
compact representation. Its lightweight, unambiguous, and privacy-compatible
character makes entropy a suitable metric that can facilitate early warning capa-
bilities, operational information exchange among network operators, and com-
parison of analysis results among a network of distributed IP darkspaces.

Using traffic from five months from a large /8 darkspace monitor, we in-
vestigate the use of an entropy vector for IP darkspace traffic classification. As
reference we perform an in-depth analysis with the tool iatmon [2] to classify
the traffic into 15 different traffic types. We then compare our entropy results
to the detailed iatmon analysis. We use the approach and the formula presented
in [3] to calculate an estimate for Shannon entropy from IP address and port
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, where i...N are the dif-

ferent bins in the frequency distribution (IP addresses or ports). ni denotes the
number of packets that belong to bin i (e.g. all packets with port number 445).
X denotes the distribution of a feature (sIP , dIP , sPort or dPort), formed by
the frequencies n1, ...nN of all bins N . S denotes the total number of observa-
tions (packets received) in the time interval. In the /8 darkspace we get N = 224

possible destination addresses and therefore H(dIP )max = 24.
For each time interval t we compute an entropy vector that contains the

four entropy values: Ht = [Ht(sIP ), Ht(dIP ), Ht(sPort), Ht(dPort)]. We ex-
pect different changes in the entropy vector (+∆h increase, −∆h decrease),
which provide a unique signature for different darkspace events.

A multi-source horizonal scan disperses source IPs and source ports,
but concentrates the destination port distribution. H(dIP ) dispersion is already
close to the maximum (24 bits) in darkspace data, so we expect only small effects
on H(dIP ) (denoted by (+∆h)): ∆Ht = [+∆h, (+∆h),+∆h,−∆h]. Backscat-
ter traffic occurs if victims of a DoS attack are attacked with spoofed source
addresses and reply to those spoofed addresses. For backscatter we expect a
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concentration of the source IP distribution, because a lot of traffic is sent from
relatively few (victim) sources. We expect a source port concentration toward
the port that was used as destination port to attack the victim machine, whereas
destination ports disperses if the attacker used random source ports. Again we
expect only a small effect on H(dIP ): ∆Ht = [−∆h, (+∆h),−∆h,+∆h]. For
a distributed probe we expect a source address and source port dispersion,
caused by the use of bots or spoofed addresses, and a concentration of destination
address and port toward the target: ∆Ht = [+∆h,−∆h,+∆h,−∆h].

We analyse darkspace traffic from 5 month: Nov 2008 (Conficker outbreak),
Jan/Feb 2011 and Jan/Feb 2012. We first classify the traffic into 15 traffic classes
using an in-depth analysis with iatmon [2]. The output serves as a baseline
against which to evaluate our entropy-based inferences. Then we calculate one
entropy vector for each hour interval, using the tool Corsaro1 and the statis-
tical package R2. We then compare the detailed iatmon results with the more
lightweight entropy analysis to see if new events follow the expected entropy
patterns and thus can be classified based on entropy.

Multi-Source Scans: The detailed iatmon analysis of Nov 2008 data reveals
an increase of TCP horizontal scan packets, caused by the Conficker outbreak,
where hosts began to scan port 445 trying to spread the worm [1]. The outbreak
of the new worm is clearly visible in entropy vectors, following the expected
entropy pattern for a multi-source scan.

Backscatter is captured effectively by the entropy vector in our experiments.
Figure 1 shows the results from Feb 2012 as an example. It shows the entropies
(1st and 2nd graph) and the amount of backscatter packets according to iatmon’s
classification (3rd graph). As expected, if backscatter increases we observe an
increase in H(dPort), a decrease in H(sPort) and H(sIP ) and no significant
changes for H(dIP ). Table 1 lists the correlation coefficients between entropy
and backscatter traffic. The observations also conform to the expected behavior.
While the increase in backscatter traffic does not always affect the overall packet
count (last row in table 1), it always shows significant changes in entropy.

Large probing events are also visible in entropy. The iatmon analysis for Jan
2011 shows a large distributed probe originating from many sources (spoofed
and/or bots) directed to a specific IP address and port. The new probe traffic
is clearly visible in the entropy statistics (figure 2); the increase in new sources

1 http://www.caida.org/tools/measurement/corsaro/
2 http://www.r-project.org/

corr. coeff. Jan11 Feb11 Jan12 Feb12 corr. coeff. Jan11 Feb11 Jan12 Feb12

bs,H(sIP) -0.48 -0.38 -0.37 -0.75 bs,H(dIP) 0.14 0.29 0.36 0.44

bs,H(sPort) -0.60 -0.52 -0.58 -0.83 bs,H(dPort) 0.69 0.62 0.69 0.91

bs,pktcount 0.28 0.39 0.48 0.76

Table 1. Correlation coefficients for time series of amount of backscatter (bs) traffic
(as seen by iatmon) and entropy (rows 1,2) and bs traffic and packet count (row 3)
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Fig. 1. Entropy correlation with backscatter traffic (February 2012), showing IP ad-
dress entropies H(sIP ), H(dIP ) (1st graph), port entropies H(sPort), H(dPort) (2nd
graph), amount of backscatter traffic according to iatmon analysis (3rd graph).

drives up H(sIP ). High concentration of traffic to one address and one port
causes H(dIP ) and H(dPort) to drop significantly.
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Fig. 2. Entropy during TCP Probe

Our results show that entropy-based metrics can reveal noteworthy events in
IP darkspace. We plan to further investigate the use of entropy to also detect
smaller changes or nested events, and evaluate the utility of this method for early
warning and privacy-respecting information sharing among darkspace operators.
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