Iraffic Identification Engine:

An Open Platform for Traffic Classification

Walter de Donato, Antonio Pescapé, and Alberto Dainotti

Abstract
The availability of open source traffic classification systems designed for both
experimental and operational use, can facilitate collaboration, convergence on
standard definitions and procedures, and reliable evaluation of techniques. In this
article, we describe Traffic |dentification Engine (TIE], an open source tool for net
work fraffic classification, which we started developing in 2008 to promote shar-
ing common implementations and data in this field. We designed TIE's architecture
and functionalities focusing on the evaluation, comparison, and combination of dif
ferent traffic classification technigues, which can be applied to both live traffic and

previously c'.;]ftured traffic traces. Through scientific collaborations, and thanks to

the support

past five years, supporting an increasin
we highlight in this aricle through samp

the open source community, this platform gradually evolved over the
number of functionalities, some of which
e use coses.

raffic classification (i.e., associating traffic flows with

their source applications) has attracted increasing

research efforts in the last decade. The explosion of

this research area started when the traditional
approach of relying on transport-level protocol ports became
unreliable, mainly because of the increasing variety and com-
plexity of modern Internet traffic and application-level proto-
cols [1, 2]. Despite the large body of literature published on
traffic classification, and research efforts of many academic
and industry research groups, there are few open source
implementations of network traffic classifiers available. In
addition, one of the main issues when novel classification
approaches are presented is the inability to properly evaluate
and compare them [3]. While the main obstacle to performing
such tasks is the actual lack of available implementations,
other difficulties derive from intrinsic differences in the types
of abjects to be classified (flows, TCP connections, etc.), in the
considered traffic classes (specific applications, application
categories, etc.), as well as in the metrics used to evaluate
classification accuracy [1].

To address these limitations, in 2008 we started the devel-
opment of an open source tool for traffic classification called
Traffic Identification Engine (TIE) [4]. TIE has been designed
as a community-oriented tool, to provide researchers and
practitioners a platform to easily implement (and share) traf-
fic classification techniques, and enable their comparison and
combination. Indeed, starting from the first release in 2009,
TIE has been widely used by the traffic classification commu-
nity by both academic and commercial organizations.

In this article, we first provide a brief overview of the evo-

Walter de Donato and Antorio Pescapd are with the University of Napoli
Federico I1.

Alberta Daio &5 with CAIDA at che University of California San Diego.

lution of traffic classification and the challenges addressed in
the last years in this research field. We then describe the main
components and functionalities of TIE by detailing some of
our design choices, also driven by such analysis of the state of
the art. We finally illustrate some representative use cases of
applying TIE to specific research problems:

* Comparing the accuracy of different classifiers

* Comparing their classification performance

* Investigating multi-classification and combination strategies

Traffic Classification and Related Challenges

The evolution of Internet applications has made traditional
methods for classifying network traffic progressively less effec-
tive [1]. Port-based approaches can easily misclassify traffic
flows, mostly because of new applications reusing port num-
bers registered at ITANA with other applications, randomly
selecting port numbers, or letting users choose a preferred
port. Payload-based approaches — which inspect packets con-
tent to identify peculiar patterns — are considered more reli-
able, but pose privacy, technological, and economic challenges,
and cannot be applied to encrypted and obfuscated traffic. In
addition, the increasing use of protocol encapsulation and
multi-channel applications (i.e., using different communica-
tion channels for heterogeneous services) has further hin-
dered the ability to classify Internet traffic.

To address such limitations, several alternative methods
have been proposed in the literature, sometimes applying
techniques and algorithms originally developed in other
research fields (signal processing, statistical models, character-
ization of network traffic, machine learning) to various traffic
properties. Examples of properties of network traffic used for
such purposes are (at flow level) duration, volume, mean
packet size, and (at packet level) size and inter-packet time of
the first n packets of a flow. Machine-learning technigques [5]
and heuristic approaches [6] have proven particularly promis-
ing when dealing with obfuscated and encrypted traffic.

56 O500-8044/14/$25.00 © 2014 IEEE

IEEE Network = March/April 2014

However, progress in this area rapidly found obstacles to
assessing the state of the art and reaching consesus (in terms
of methodologies, definitions, and best practices) in the
research and operational community. The diversity in the ter-
minology and definitions adopted when describing approach-
es and metrics [2], as well as the wide range of granularities
in defining flows and traffic classes across approaches [1],
made it difficult to compare different studies. For instance,
different approaches assign flows to traffic classes of different
granularity (e.g., identifying application categories such as
peer-to-peer vs. specific applications such as Kazaa, Bittorrent).
Agreeing on shared procedures, benchmarking metrics, flow
definitions, traffic classes, as well as mapping between differ-
ent classification granularities (e.g., mapping the IMAP,
POP, and SMTP application protocol classes to the mail cate-
gory class) would instead yield more rigorous results and
facilitate the assessment (and thus the progress) of the state
of the art in this field [1]. According to this philosophy, we
designed TIE to easily compare classifiers, as we show in the
first use case.

Another difficulty (mostly due to privacy concerns) is in
accessing traffic traces representative of different scenarios, to
be used as test data or as reference for validation [1]. Inspired
by solutions proposed by the community [3], we added in TIE
support for sharing traffic traces without payload along with
per-flow reference labels (sometimes called grownd truth).

Most classification approaches were not designed to work
in real-world scenarios (i.e., online), for example, for live
reporting or triggering of actions according to classification
results is expected. Several compromises have then been pro-
posed to find the right trade-offs among accuracy, perfor-
mance, and cost: reducing the amount of traffic data analyzed
(e.g., limiting the number of packets inspected for each flow
[7, 8]); reducing the computational overhead (e.g., shrinking
the set of features [9]); exploiting the high parallelism of new
computer architectures (e.g., general-purpose graphical pro-
cessing units, GPGPUs [10]). We describe how we designed
TIE to support online classification and performance evalua-
tion, two key functionalities in the second use case discussed
in this article.

Different classification approaches are affected by distinct
limitations but show complementarity [1]. Hence, they can be
combined to achieve higher accuracy using information fusion
algorithms [11], which typically require additional input, such
as confusion matrices! or Behavior Knowledge Space (BKS)
tables.? In 2010 we started extending TIE to support intelli-
gent combination strategies. Our third use case demonstrates
such functionality.

Despite the considerable research efforts and the success of
several innovative approaches, there are still no definitive
answers to the challenges discussed above. As a consequence,
most of the open sourse software tools do not address them.
Currently, most available traffic classification tools rely on
payload inspection: L7-filter” for a long time has been the de
facto standard open source DPI classifier; however, its signa-
tures have not been updated in recent years; nDPI* (derived
by the terminated OpenDPI project) implements more up-to-
date and complex pattern matching rules, also including a

! A confusion mairix contains in each cell (i, j) the perceninge of objects
af class i recognized by the classifier as belonging 1o class j

2.4 BES wable lisis the probability of an object belonging o each class for
each possible combination of outpus from different classifiers.

¥ hutp: i I7-filser. sourceforge. net

decoder for SSL certificates. libprotoident> relies on the first
four bytes of payload sent in each direction, the size of the
first payload-bearing packet in each direction, and the TCP or
UDP port numbers.

To our knowledge, there are a few (open source) traffic
classifiers implementing statistical or machine-learning tech-
niques presented in the literature: Tstae 2.0 [12] uses a cus-
tomized machine-learning technique based on a Bayesian
framework with packet size and inter-packet time as classifica-
tion features; MTClass [13] is a multi-threaded and modular
traffic classifier based on statistical approaches and supporting
online classification; CoMe [14] implements two machine-
learning techniques: Naive Bayes with kernel density estima-
tion and single-class SVM; Diffuse® applies machine-learning
techniques to perform automated QoS management for traffic
flows of interactive applications; and NeTraMark [15] inte-
grates seven machine learning and two statistical classifiers
into a framework similar to TIE.

Finally, a few tools are available to extract features from
traffic flows or label them: NetdI” works on both live and
stored traffic; Fullstats® supports the extraction of up to 249
features from traffic traces; GTVS [16] assists researchers in
manually inspecting and semi-automatically labeling traffic
traces; &T [17] associates accurate ground truth information
with traffic traces in controlled environments.

The TIE Platform

In this section, we briefly describe TIE's components and
functionalities by detailing some of the design choices,
focused on multi-classification, comparison of approaches,
and online traffic classification. For a more detailed descrip-
tion please refer to [4].

Definitions and Operating Modes

Definitions — In order to compare different classification
approaches, TIE proposes a unified representation of classifi-
cation results. It defines IDs for application classes (applica-
tions) and associates them with group classes (groups), which
include applications offering similar services. Such mapping
enables the comparison of technigues working at different
granularities (e.g., applications vs groups) or, for instance, the
comparison of traffic classifiers which have application-level
protocol classes using a coarser granularity. Moreover, several
application sub-classes (sub applications) are associated with
each application, in order to discriminate related traffic flows
serving different purposes (signaling vs. data, Skype voice vs.
Skype chat, etc.).

Operating Modes — TIE can be run in three operating

modes, each corresponding to a different overall behavior:

* ffline mode: A flow is classified only when it expires or at
the end of TIE execution. This mode is useful for evaluat-
ing classification techniques when no timing constraints
apply, or when a classifier requires observing flows for their
entire lifetime.

4 http:www_niop. orglproductsindpil

3 hip:ffresearch.wand netnz{software libprotoident. php
O prrap:ffwww.coia. swin. ede. auforp/diffuse/

7 hatp: ffeaiaswin. eduw.aufuwrpldsic inetai

8 hips:{{gichub.com foshsziegler|fullsiats

IEEE Network = March/April 2014

57

Classification
lts

Packet Session
filter builder extractor |/

—
results

lookup on a hash table for each packet), some
applications may need more accurate identification
of their lifetime. Hence, TIE implements computa-
tionally-light heuristics based on TCP flags that,
applied to biflows, yield to a better approximation
of TCP connections, avoiding the segmentation of
TCP connections into several biflows in presence of

long periods of silence (e.g., Telnet, SSH).

Figure 1. Main components aof the TIE engine.

* Real-time mode: A flow is classified as soon as enough infor-
mation is collected, thus implementing online classification.
This mode can be used for policy enforcement (QoS5,
admission control, billing, firewalling, etc.).

* Cyclic mode: Flows are classified at regular time intervals
(e.g., each 5 min), and the results are stored in separate
output files related only to the corresponding interval,
which is useful to build live traffic reports.

All working modes can be applied to both live traffic and traf-

fic traces. Among them, the real-time mode imposes most con-

straints and heavily influenced the whole design of the TIE
engine.

Architecture Overview and Functionalities

TIE is written in C, targeting UNIX-like operating systems,
currently supporting the Linux, FreeBSD, and MacOS X plat-
forms. The software consists of a single executable and a set
of classification plugins dynamically loaded at runtime. In
addition, the TIE framework includes a collection of utilities
— distributed with the source code — to post-process output
files.

The TIE engine processes packets in five stages, with the
last two varying on whether TIE is used for classifying traffic
or to train machine-learning classifiers (Fig. 1).

Packet Filter — This stage captures link-layer frames — or
reads them from a file — and filters them according to config-
urable rules. It is based on the well-known Libpcap library,”
and its filtering capabilities are implemented using both
Berkeley Packet Filters and additional user-space filtering
rules (e.g., selecting traffic within a specified time range).

Session Builder — This stage organizes network traffic into

sessions (i.e., the flow objects to be classified). We defined a

generic concept of session to support the various types of traf-

fic flow objects adopted in literature:

* flow: defined by the {SRC gp, SRCpor, DESTip, DEST oy,
transport protocol} tuple and an inactivity timeout, with a
default value of 60 s.

* biflow: defined by the {SRCp, SRCp,, DESTyp, DEST,,,
transport protocol} tuple, where source and destination can
be swapped, and the inactivity timeout is referred to pack-
ets in any direction.

* host: containing all the packets a host generates or receives.
A timeout can be optionally set.

Except for the first session type, this stage differentiates traf-

fic flowing in two opposite directions (upstream and down-

stream) by taking as reference the first observed packet

(upstream). Counters, features, and state information are kept

separately for each direction.

Although biflows can be considered a computationally effi-

cient approximation of TCP connections (they only require a

® hutpffwww.icpdiomp.ong/

This stage keeps track of sessions using a chained
hash table, and — to properly work with high traf-
fic volumes — it includes a Garbage Collector com-
ponent responsible for periodically releasing the
resources related to classified and expired sessions.

Feature Extractor — This stage is responsible for collecting the
features required by the classification plugins, and is triggered
by the session builder for every incoming packet. As reported
in Table 1a, for each session it provides:

* Basic features (always available to classifiers)

* Advanced features (extracted on demand)

In order to optimize computational efficiency, advanced fea-
tures are collected only if specified by a command line option
and if a skip-session flag is not set (this flag avoids processing
additional packets when enough packets have already been
inspected). While we included support for features based on
the most common classification techniques (port-based, flow-
based, payload-based, etc.), TIE can easily be extended to
extract new features based on definitions already published in
the literature [22] or to support new techniques.

In order to rapidly experiment with techniques implement-
ed by external tools, this stage can optionally dump for each
session the corresponding classification features along with
the label assigned by a classifier (e.g., a payload-based classifi-
er can used to establish ground truth). TIE supports dumping
features directly in some common formats, such as the arff
format used by WEKA, 10 one of the most used tools in the
field of machine-learning classification.

Decision Combiner — When TIE is used to classify traffic, the
fourth stage of the TIE engine consists of a multi-decisional
engine made of a decision combiner (hereinafter DC) and one
or more classification plugins (hereinafter classifiers) imple-
menting different classification techniques.

The DC is responsible for classifying sessions by combining
multiple classifiers according to different algorithms, as report-
ed in Table 1b. Whenever a new packet associated with an
unclassified session is processed by the feature extractor, if all
the classifiers are ready to be invoked on that session, the DC
combines their results according to the configured algorithm in
order to make the final decision. A confidence value between
0 and 100 represents the overall reliability of such a decision.

Since most combination algorithms require additional
information (a sort of training of the combiner), a set of utili-
ties extracts from a reference file (i.e., a previously generated
TIE output file) the confusion matrix and BKS table neces-
sary to train them. The default combination is the PRI, in
which the classifier with higher priority determines the final
result.

Classification Plugins — Traffic classification techniques are
implemented in TIE as plugins exposing a standard interface
[4] through which their functionalities can be activated. Each
plugin is enabled only if the features it requires are available
and, once enabled, its classification knowledge base is loaded.

0 pagpcf fwwew. cx. waikato. e nzfmi iweka

58

IEEE Network = March/April 2014

(a) Supported basic and advanced per-session features

Category Description Availability Packets inspected
Number of upstream/downstream packets
Number of upstreamydownstream packets carrying payload
Every packet
Amount of upstream/downstream bytes
Basic Always
Duration
Sourcefdestination port
First packet
Transport layer protocol
Intes-packet time among the first n packets
First n packets
Packet and payload size of the first n packets
First packet per direction
First v bytes in the first packet with payload (per direction)
Stream of payloads up to b bytes 0On demand Packets necessary to collect b payload bytes
Advanced

Upstream/downstream payload sizes stats (min, max, mean, variance)
Upstream/downstream inter-packet times stats (min, max, mean, variance)

Full packet content (headers + payload)

Upstream/downstream round-trip time stats (min, max, mean, variance)

Every packet

On demand {with
biflow sessions only)

(b} Implemented combination algorithms

Label Technique Category Training
NE Maive Bayes Bayesian
W Majority Vioting
Vote Confusion matrix
WMV Weighted Majority Voting
-5 Dempster-Shafes Dempster-Shafer
BS BES Behavior knowledge BES
WER Wermecke space BKS & Confusion matrix
ORA Orade Oracle MNA
PRI Friority-based NA
{c) Classification plugins developed since 2008
Classification plugin Features based on Classification approach Collaborations and contributions from the community
Port Protocol ports Port-based Developed by UNINA, signatures from CAIDA
LT Payload Deep payload inspection Developed by UNINA, code and signatures from Linux L7-filker
Portload Payload Lightweight payload inspection [8] Developed by UNINA
GMM-PS First few packet sizes Gaussian mixture modets [7] Developed by UNINA
HMM Packet size and inmter-packet time Hidden Markow models [18] Developed by UMINA
FPT Packet size and inter-packet time Statistical [19] Joint m:ﬁehm ::Iﬁrﬂilgpt:ﬁ:::‘s?mﬁmia "
Joint Packet size and inmter-packet time Nearest neighbor [20] Joint work: UNINA, CAIDA, Seoul National University
OpenD@A Payload Deep payload inspection Joint work: UNINA, TU Minchen
Developed by UNINA in collaboration with more than six
WEKA/arff Any information Machine learning [21] research groups (THALES Communication and

Table 1. Breakdown of TIE extensible functionalities.

Security, Tokyo Institute of Technology, etc)

IEEE Network = March/April 2014

59

- Meaan time kdean time Variapce
LEeiE Tus) {vs. port-based) wsd)
Port-based 248 1.0 0.88
Portload 6.99 28 11.15
L7-filter 2114 B5.2 47,057.88

Time (s)

Pt
]

-
155
=]

g

Memory (M ytes)
u

0 SO0 1000 1500 2000
Time (s)
]

Figure 2. Comparison of performance among Port, PortLoad,
and LT: a) comparison of classification time (per-session aver-
age values); b) memory and CPU usage over time.

We currently distribute TIE along with a skeleton plugin
(i.e., the starting point to develop a new plugin) and two basic
classification plugins, respectively implementing traditional
approaches: port- and payload-based. For a more detailed
description of both plugins, please refer to [4]. Since 2009,
several additional plugins have been developed, also through
collaborations with other research groups, implementing tech-
nigues based on machine-learning and statistical approaches
(Table 1c).

Owtput Generator — When TIE is used to classify traffic, the
last stage of the TIE engine is responsible for generating out-
put files containing information about the sessions processed
and their classification. While the output format is unique,
counters and timestamps semantics depend on both the oper-
ating mode and session type [4]. When working in cyclic
maode, such output can easily be processed to generate live
visual reports.

Pre-Classifier — When TIE is used to train classifiers, the
fourth stage of the TIE engine pre-loads the labels associated
with each session from a ground-truth file, which can be
obtained as output by running TIE on the same traffic trace
with a ground-truth classifier.

Trainer — When TIE is used to train classifiers, the last stage
of the TIE engine is responsible for invoking the signature-
collection functions implemented by each enabled plugin, to
let them collect the necessary per-packet information and trig-
ger their training at the end of the TIE execution.

Extensions for Performance Evaluation — We also introduced
functionalities that can be enabled at compile time and can be
used — together with the native support for gprof!! — to
evaluate the performance of traffic classifiers. Specifically,
memory dump and timing functionalities generate fine-

grained memory occupation and classification time logs,
respectively.

Utility Scripts — TIE is distributed along with a set of utilities
for elaborating or converting output files. The most relevant is
the tie_stats script, which rapidly produces synthetic
reports and confusion matrices. A subset of scripts can instead
be used to plot traffic data based on the CoralReef!? frame-
work, and collect and process performance related data.

TIE and the Research Communify

Starting from the first release of TIE in 2009 {at that time
available upon request by email), the platform has been cited
in more than 40 publications and, through several collabora-
tions, has been extended to support new classification features
and schemes — including the combination of multiple classi-
fiers — as well as to run techniques already available in
WEKA (third use case). Since 2011, when a more recent ver-
sion of TIE was released, TIE has been downloaded more
than 150 times according to statistics collected at the official
website (unigque downloads of distinct users who filed a
request through a web form). The download requests originat-
ed from universities (62 percent), companies (30 percent), and
individuals {8 percent).

TIE at Work

This section describes the application of TIE to three differ-
ent use cases. We focus on demonstrating, through practical
examples, how such a tool can help tackle some of the
research challenges highlighted earlier, without particular
emphasis on the performance and accuracy of the classifiers
used in this article.

Comparing Classification Accuracy

TIE can be used as an enabling technology for rapid develop-

ment and effective comparison of traffic classification

approaches in terms of accuracy. In [8], we used it to develop
and evaluate a lightweight payload-based classifier called Porr-

Load (see the PortLoad plugin in Table 1c), which inspects

only the first 32 payload bytes of the first packet in each

direction of a session. We compared PortLoad to:

* A port-based classifier (the Port plugin, based on CoralReef
signatures).

* A DPI classifier (L7 plugin, based on L7-Filter). Such com-
parison has been conducted on a full-payload traffic trace
of 40 Gbytes captured at the University of Napoli, Italy.

To perform this comparison, we first launched TIE with
only the L7 plugin enabled in order to use its results as a ref-
erence. We then executed TIE enabling the PortlLoad and
Port plugins, respectively. By running the tie_stats utility
on the generated output files, we obtained the related confu-
sion matrices, from which we evaluated the (expected) loss in
accuracy when moving from DPI to PortLoad and port
approaches.

As shown in Fig. 3a, PortLoad reported an overall accuracy
and byte accuracy of about 74 and 97 percent, respectively,
showing very good results on heavy flows. Figure 3b (right)
represents the confusion matrix (with applications grouped
into categories) of PortLoad against L.7. The warm colors on
the main diagonal denote a good accuracy on most (categories
of) applications, whereas few cells outside of it show applica-

N e www.cs.utah.edu/dept/old texinfojas gprof himl
12 hpc/www.caida.ongitoolsfmeasurementcoralreef

IEEE Network = March/April 2014

Accuracy on applications | Accuracy on categories of apps

Classifier | Sessions Bytes Sessions Bytes

Portload | 74.24% 97 .83% 73.88% 97.45%

Port 19.57% 25.12% 15.95% 23.B9%

(a)

Disagree M Unclassified M Agree
100~] Ag | —

90
80
70
60
50
a0
30
20
10
0 |

En'tnrrent Edonkey I.Inknown Other

Byte accuracy (%)

Conferencing
sz wmeedoae
Web
Unknown T
Services
Encryption T
4 Net manag.
P el
B Muhimedia i}
Tunneling i
Filesystom Tl
ok R
Game. B
Interactive [l
News

-

0.8

0.6

0.4

02

T

News |
VolP :

o o C Eg=mp O F =]
ShEzlisgzglizid
E S 2E Espr deE

:WEE _1-_-':;']- E
= 2 &z E'—E =
=1
v

Response

{b)

Figure 3. Classification accuracy as obtained by comparing Port and PortLoad against .7: a) overall accuracy of Portload and Port
plugins; b) PortLoad vs L7: byte-accuracy on applications generating most of the traffic (left); confusion matrix with applications

grouped into categories (right).

Label Technique Catogory Features

148 148 Dedsion Tree Machine learning PS5, IPT

K-NN K-Mearest Meighbor Machine learning PS5, IPT

R-TR Random Tree Machine learning L4 protocol, biflow duration and size, PS and IPT statistics
RIP Ripper Machine learning L4 protocol, biflow duration and size, PS and IPT statistics
MLP Multi Layer Perceptron Machine learning Ps

NEAY Maive Bayes Machine learning Ps

FL Portload Payload inspection Payload

PORT Port Port Ports

Table 2. Classifiers used for the comparison of different combination sirategies (PS: payload size, IPT: inter-packet time).

tion categories that are not well identified by Portload. Fig-
ure 3b (left) summarizes the classification results for the
applications with the largest byte counts. Each bar (corre-
sponding to a class) represents the percentage of bytes on
which Portl.oad agreed, disagreed, or returned unknown,
respectively, regarding L.7. TIE allowed us to conclude that
the PortLoad approach is a valid lightweight and privacy-pre-
serving alternative to DPI when the main objective is to
obtain high byte accuracy (97 percent) and lower unknown

percentage (40 percent less).

Comparing Memory and Computational Overhead

TIE can also be used to compare the performance of traffic
classification approaches in terms of classification time and
CPU/memory usage. In [8], by using the same traffic trace and
classifiers of the previous use case, we also compared their
memaory and CPU overhead using TIE's extensions for perfor-
mance evaluation. We conducted our tests on GNU/Linux
(kernel 2.6.27), after verifying that no other user processes
were consuming significant CPU time, and none of the oper-
ating system processes were CPU- or [/O-intensive.

To measure classification time, we compiled TIE with the
timing option enabled, and used the values measured for the
Port plugin as a reference, since this is the fastest classifica-
tion technique (it only requires one lookup on a hash table
for the first packet of each session). Figure 2a summarizes
the overall results with per-session average values. Port-
Load’s average classification time was 97.5 percent lower

than that of L7, with classification times much closer to the
Port plugin. Such results are consistent with PortLoad requir-
ing, by implementing a fixed string comparison, much less
computational resources than pattern matching based on
regular expression.

We monitored resource usage by enabling the memory
dump functionality, through which heap memory allocations
can be logged to file, and collecting the CPU usage of TIE
with a shell script based on the ps command. Figure 2b shows
that the CPU usage of TIE, when running only L7, reached
the maximum value within the first 60 s after decreasing to a
steady value. The slow decay is probably due to the fact that
the CPU percent reported by ps is a moving average. On the
other hand, the Port and PorrL.oad plugins showed similar
qualitative behaviors, spon reaching steady levels.

Multi-Classification and Combination Sirategies

In [21], we used TIE to perform — for the first time in the lit-

erature — a comprehensive comparison of algorithms for the

combination of different traffic classification approaches. We
selected different pools of classifiers out of a total of seven,

the main characteristics of which are summarized in Table 2.

Specifically, we considered:

* Six machine-learning-based classifiers well known in the lit-
erature, which we tested through the WEKA plugin and the
support for arff file exporting

* The Portl.oad payload-based classification plugin

* The Port plugin

IEEE Network = March/April 2014

&1

(a) Classification accuracy — per-application and overall — of standalone classifiers compared to the Oracle (best values are
reported in bold font).

Classifier

Class 148 K-NN R-TR RIP MLP NBAY PL Port Oracle
Bittorremnt 98.8 97.4 98.9 98.6 55.1 79.9 1.7 1.0 99.9
SMTP 95.1 92.9 938 96.0 90.6 69.2 8.2 96.3 99.4
Skype2skype 98.8 97.2 96.5 99.2 94.6 e 98.7 0 99.7
POP 96.0 95.0 98.7 3.9 0 79.6 29.2 100 100
HTTP 09.5 98.9 99.6 99.3 94.3 633 99.1 471.7 100
Soulseek 98.6 96.8 98.3 98.1 53 97.7 0 0 99.9
MENS 78.4 5.9 9.9 80.4 9 0 0 0 85.4
Qo 0 0.7 2.5 0 0 0 0 0 32
DNS 93.6 92.6 953 94.4 511 86.2 100 99.7 100
S5L 96.1 53.1 895.2 83.7 69.5 68.2 99.1 0 98.6
RTP 84.0 741 64.5 173 0 41.5 0 0 92.2
EDonkey 93.0 M.7 93.3 .5 712 16.1 92.9 0.1 95.7
Overall 97.2 5.9 96.3 97.0 823 43.7 83.7 15.6 98.8

(b) Classification accuracy of each combination algorithm for different pools of classifiers combined (best values and pools are
reported in bold font).

algorithm
Pool of classifiers NB MV WMV D5 BKS WER
J48,R-TR,RIP 54.1 96.3 96.3 96.2 97.7 97.7
J48 R-TR,RIP,PL 55.2 96.4 96.2 96.6 97.8 97.8
148 K-NN,R-TR,RIP,MLP 53.5 90.7 90.7 96.7 96.0 96.1
J48 K-NN,R-TR,RIP,MLP,NBAY 80.1 72.0 722 96.7 97.32 97.3
J48 K-NN,R-TR,RIP,MLP,PL 93.5 90.8 91.0 97.0 97.9 97.9
J48 K-NN,R-TR,RIP, MLP,NBAY, PL 80.9 72.0 722 97.0 97.7 97.7
J48 K-NN,R-TR,RIP,MLP,PL ,PORT 93.6 90.5 90.8 971 97.7 1.7
148, K-NM,R-TR,RIP, MLP, MBAY ,PL,PORT 54.6 72.8 .2 971 97.4 97.4

Table 3. Comparison of standalone and combined classification accuracy.

We evaluated the combination of such classifiers through the
algorithms reported in Table 1b [21], implemented within the
DC. The Oracle combiner represents the theoretic multi-classifi-
cation system that correctly classifies a sample if at least one of
the base classifiers is able to provide the correct classification.
We performed such analysis on a traffic trace of 59 Gbytes,
counting about 1 million sessions collected at the University
of Napoli. As a reference, we labeled the trace by running
TIE with the L7 plugin, filtering out all the unknown sessions
(about 167,000} and all the sessions related to applications
counting less than 500 occurrences. Finally, we divided (cross-
validation) such a dataset in three subsets:
* 20 percent classifiers training set
* 40 percent classifiers and combination algorithms validation
el
* 40 percent classifiers and combination algorithms rest set

As a starting point, we evaluated the standalone accuracy
of the classifiers, as reported in Table 3a. The different per-
formance obtained by the classifiers for each application, and
in particular their best accuracy score (printed in bold),
denotes how such classifiers are complementary. Moreover,
the overall accuracy obtained by the Oracle (98.8 percent)
denotes that the combination of such classifiers theoretically
could have performed better than the best classifier (97.2 per-
cent).

We then experimented the combination of the classifiers
grouping them in different pools, as shown in Table 3b,
where the overall accuracies for each pool and combination
algorithm are reported. The results confirmed that, in gen-
eral, combination can effectively improve the classification
accuracy, and such improvement depends on both the
adopted combination algorithm and the selected classifiers.

&2

IEEE Network = March/April 2014

(a) Accuracy obtained by each classifier when varying the number of available packets (best values are shown in bold)

Mumber of packets observed for each biflow

Classifier
1 2 3 4 5 6 T 8 9 10
148 62.1 94.6 95.9 96.0 96.8 971 97.2 97.2 97.2 97.2
K-NN 62.4 M.5 928 95.0 294.9 949 95.4 95.7 95.6 95.9
R-TR 727 93.4 93.6 94.9 95.3 96.8 96.0 96.0 96.1 96.2
RIF 69.5 83.7 94.7 96.2 96.1 96.5 96.7 96.9 96.9 96.9
MLP 43.5 nz 81.0 82.3 82.3 823 82.3 823 82.3 823
NBAY N5 39.9 426 43.7 43.7 437 43.7 437 43.7 437
PL 76.2 83.7 83.7 83.7 83.7 837 83.7 83.7 83.7 83.7
PORT 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6 15.6

(b) Accuracy obtained by the J48, R-TR, RIP, PL pool of classifiers when varying the number of available packets (best
combination strategies are reported in bold)

Mumber of packets observed for each biflow

Combination
1 2 3 4 5 6 7 8 9 10
MV 57.8 53.9 94.4 95.6 959 96.2 96.3 96.3 96.4 96.4
D-5 831 96.0 96.9 97.0 974 97.4 96.4 96.5 96.5 96.5
BKS 97.0 98.4 98.3 98.4 98.4 98.4 98.4 98.4 98.4 98.4
WER 97.0 98.3 98.2 98.4 98.4 98.4 98.4 98.4 98.4 98.4

Table 4. Classification accuracy obtained when varying the number of available packets (early classification).

However, the Port and Naive Bayes classifiers — already
showing low standalone performance — in general present-
ed a negative impact on the accuracy of the multi-classifier
system. The pool of classifiers achieving the best results
(reported in bold) were using four and six classifiers out of
the eight tested. The same table shows how the best accura-
cies (in bold) are achieved by the BKS and Wernecke com-
bination algorithms, reporting the highest overall accuracy
(97.9 percent).

We also investigated the performance of multi-classifica-
tion systems when applied to early classification, that is, clas-
sifying traffic by relying only on the first few packets of each
session. This is a realistic scenario when evaluating online
traffic classification. We could easily perform such complex
analysis, which was the first study of this kind in the literature
[21], thanks to two key features in TIE:

* The ability to configure from which portion of traffic the

features passed to the classifiers can be extracted

* Multi-classification support

We first launched TIE by separately enabling each classifier
and increasing the number of packets used to extract the clas-
sification features from 1 to 10. The results, reported in Table
4a, confirmed that reducing the information available to the
classifiers significantly reduced their accuracy. Such an effect
was less evident for Portload and Port because they require
at most 2 and 1 packets per session, respectively. We then
applied the best four combination algorithms (according to
Table 3b) to the J48, R-TR, RIP, PL pool of classifiers (i.e.,
the smallest best pool according to the previous analysis). The
results, reported in Table 4b, showed an average gain in accu-
racy of 42 percent with respect to the standalone classifiers
when extracting the features only from the first packet, which
is the best condition for classifying online traffic. Hence, TIE

helped us to demonstrate that multi-classification systems can
dramatically improve the accuracy of online traffic classifica-
tion.

Conclusion

In this article we describe TIE, a platform we started develop-
ing in 2008 to help researchers to tackle unsolved challenges in
traffic classification. Thanks to the support of the open source
community and scientific collaborations, the platform has grad-
ually evolved during the past five years, enabling the produc-
tion of significant scientific results. In the first quarter of 2014,
we plan to release a new version of the platform based on
feedback and contributions from users collected in the past two
years. Thereafter, we plan to further extend TIE by:

* Investigating the optimal combination strategy and set of
classifiers to generate reliable ground truth while presery-
ing privacy

Extending the support for sharing labeled traffic with
anonymized traces

Investigating strategies for multi-threaded classification,
exploiting:

-Offloading techniques offered by recent traffic capturing
engines such as multi-queue adapters and multi-line buses
between NICs and CPU cores

—GPU extensions

~-NUMA capabilities, and so on

References

[1] A. Dainci, A. Pescaps, and K. C. Claffy, “lssves and Future Directions in
Tiraffic Classification,” |EEE Mebwork, vol. 26, no. 1, 2012, pp. 35-40.

[2] A. Calledo et ., "A Su on Internet Traffic [denfification,” IEEE Com-
mun. Surveys & Tulorials, vol. 11, no. 3, 2009, pp. 37-52.

IEEE Network = March/April 2014

&3

[F1L S-u arelli, F. Gringoli, and T. Karogionnis, "Com

ing Traffic Classi-
fiers SIGCOMM mpr.rr Commun. Rev., vol. 3

, no. 3, 2007, pp.

65-68.

[4] A. Daincti, W. de Donofo, and A. Pescopé, "TIE: A Community-Oriented
Troffic Classificofion Platform,” Troffic Moniloring and Analysis, Springer,
2009, pp. d4-74.

[B]IT.T. Ng ond G. Armitage, "A of Techniquees for Infernet Traf
fic Classification using Machine Leaming,” IEEE Commun. Surveys & Tufo-
rigls, vol. 10, no. 4, 8, pp. 56-76.

[T. K-:Iugimnii. K. Papogionnaki, and M. Falowvtsos, "Blinc: Mulilevel Traf-
fic Classification in the Dark,” ACM SIGCOMM Comp. Commun. Review,
vol. 35, no. 4, 2005, pp. 220-40.

[7] L Bernaille, R. Teixeira, and K. Solomafion, 'ECII"" Applicafion Identifico-
fion,” Proc. 2006 ACM CoNEXT Conf, 2006, p. &

[B] G. Aceta af dl., "Porfload: Taking the Best of Two Words in Traffic Classi-
fication,” IEEE INFOCOM Whsps., 2010, pp. 1-5.

[9] M. Williams, 5. Zander, and G. Armitage, “A Preliminary Performance
Comparison of Five Machine Learning Al orithms for Practical IP Traffic
Flow Classification,” ACM SIGCOMM C& vol. 36, no. 5, Ok, 2006,

. 7-15.

[lﬂr%. Szabt ef al., "Traffic Classificotion over Ghit Speed with Commodity
Hardware,” IEEE J. Commun. Software and Syslems, vol. 5, 2010,

[11] A. Callodo et al., "Bafier Metwork Traffic ification Through the Inde-
pendent Combination of Techniques,” J. Metwork ond Computer Applice
fions, vol. 33, no. 4, 2010, pp. 433-46

[12] A. Finamore ef dl., “Experiences of Infernat Troffic Monitoring with tsfof,”
IEEE Network, vol. 25, no. 3, 2011 . pp. B-14.

[13] F. Gringoli et al., " Mclass: Emblmg Statistical Troffic Classificafion of
Multi-Gigabit Aggregulai on Inexpensive Hardware,” 2072 8th Int].
Wireless Commun. and Mobie Computing Conf., 2012, pp. 450-55.

[14] A. Este, F. Gringoli, and L. Salgarelli, Ondine SVM Traffic Classifica-
fion,” 201 1 7th Int’l. Wireless Communiootions and Mobile Compufing
Conf., 2011, pp. 1778-83.

[15] 5. Lee af |:I‘ Metramark: A Mebwork Traffic Classification Benchmark,”

GC'GHMG:mp Commun. Rev., vol. 41, no. 1, Jan. 2011, pp. 22-30.

[1&] M. Canini et al., "Gtvs: E-u-ufshng the Collaction of Applic-::lim Traffic
Ground Truth,” Tra ffic Monitoring ond Analysis, Springer, 2009, pp.
54-43

171 F. Gringoli af ol., "Gt Plckmg‘g[l the Truth from the Ground for Internet
Traffic,” P Commun. Re 39, no. 5, 2009, pp. 12-18.

[18] A. Dainctfi ef al., “Classification of Metwark Traffic via Pockstlevel Hid-
den Markov Models,” IEEE GLOBECOM 08, 2008, pp. 1-5.

[19] M. Crotti ef al., “Traffic Classification Through Simple Stofistical Finger-

infing,” ACM SKGCOMM CCR, vol. 37, no. 1, Jan. 2007, pp. 7-14.

[20] A. Dainotti, A. Pescapé, and H. chul Kim, “Troffic Claossification through

Jaint Distributions of Pocketlevel Seafistics,” IEEE GLOBECOM 11 20“%
1-4.

[21] A. Dainatti, A. Pescapé, and C. Sansone, "Ea
work Traffic through Mulfi-Classification,” Traffic
Springer, 2011, 122-35.

[22] A. more D. Zvev, and M. CIOE

Based Clusmﬁcu:ﬂmn, Dept. Comp
rep. RR-05-13, 2005,

Biographies

‘WalLTer DE DonaTo [M08] (walter.dedonato@unina.it] is a p-ust—cludm-::l
researcher at the Eledirical E;?e'naanng and Information Tachruz:?

ment, University of Mopoli Federico I, Mapoli, lkaly.. He recei {us Pli:u[}
degree in co engineering and systems from the Unlvars:]r of Mopoli
Federico [l in 2011, His main research inferests are in the field of Infernet
measurement and netwaork traffic analisys, with a focus on large-scale mea-
surement plotforms. He hos received several awards for his ressarch activities.

Classification of Met-
nitoring and Analysis,

"Discriminators for Use in Flow-
, Clueen Mary, Univ. London, tech.

ANTOMNIO PEsCAPE [M'DD, SM'09] | pei@unina.if] is an assistant professor
at the Electrical Engineering and Inﬁmmun Technalogy Depcrfnmﬂ Lniversi-
ty of Mapali Federico Il. He received his Ph.D. degree in com ngineer-
ing and systems from the University of Napoli Federico Il in 201}4 His
research inferests are in the Hwa‘km_; field with focus on Infernet monitaring,
measurements and management, and network security; for his research octivi-
ties he has received mony owards. He acts as a reviewer for notional and
internafional research and development projects.

AwpsTo Damomn [M'04] [albero@coida.org) is a research scientist at Cu%m
ative Associafion for Infemet Data Anolysis [CAIDAJ, SDSC, University of Cali-
fornia, San Diego. In 2008 he received his Ph.D. in computer enginearing
and systems from the riment of Computer Engineering and s of the
University of Mapoli Federico Il. His main resear rﬂn interests are in the field of
Internet measurement and network security, with a focus on the analysis of
w?h&'scde Internet events. In 2012 he was awarded the IKTF Applied Met-
ng Research Prize.

IEEE Network = March/April 2014

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage false
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Cadmus settings for Acrobat Distiller 9)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 2400
 /PresetName (Cadmus_Flattener_Presert)
 /PresetSelector /UseName
 /RasterVectorBalance 1
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

