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a b s t r a c t

Networks representing many complex systems in nature and society share some common structural
properties like heterogeneous degree distributions and strong clustering. Recent research on network
geometry has shown that those real networks can be adequately modeled as random geometric graphs in
hyperbolic spaces. In this paper, we present a computer program to generate such graphs. Besides real-
world-like networks, the program can generate random graphs from other well-known graph ensembles,
such as the soft configuration model, random geometric graphs on a circle, or Erdős–Rényi random
graphs. The simulations show a good match between the expected values of different network structural
properties and the corresponding empirical valuesmeasured in generated graphs, confirming the accurate
behavior of the program.

Program summary

Program title: Hyperbolic graph generator
Catalogue identifier: AEXC_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEXC_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: GNU General Public License, version 3
No. of lines in distributed program, including test data, etc.: 101190
No. of bytes in distributed program, including test data, etc.: 771660
Distribution format: tar.gz
Programming language: C++.
Computer: Any.
Operating system: Any.
Classification: 6.3, 4.13, 23.
Nature of problem: Generation of graphs in hyperbolic spaces.
Solution method: Implementation based on analytical equations.
Additional comments:Can be used as a command-line tool or installed as a library to supportmore complex
software.
Running time: Depends on the number of nodes. A few seconds for the graph in the example provided.

© 2015 Elsevier B.V. All rights reserved.

✩ This paper and its associated computer program are available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
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1. Introduction

The interactions between components of a complex system
are often represented as a network. This modeling allows for rig-
orous mathematical treatment, and broadens our understanding
of the system [1]. Many real networks possess common struc-
tural patterns, including, in the first place, heterogeneous (often
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Table 1
Regimes in the model.

power-law) distributions of node degrees [2], and strong cluster-
ing, i.e., higher numbers of triangular subgraphs than predicted
by classical random graph models [3]. Recently introduced geo-
metric graph models, based on the assumption that nodes in real
networks are embedded in latent hyperbolic spaces [4,5], repro-
duce these common structural properties of real networks. Fur-
thermore, these hyperbolic graphs replicate dynamical processes
on top of real networks [6] and accurately predict missing links in
them [7].

In this work we present a program to generate random hy-
perbolic graphs. This software implements and extends the net-
work model introduced in [4]. Nodes are randomly sprinkled on
a hyperbolic disk, and the probability of the existence of an edge
(the connection probability) between two nodes is a function of
the distance between the nodes in the hyperbolic space. Thus
generated graphs have strong clustering, and node degree dis-
tributions in them are power laws. Moreover, other popular and
well-studied random graph ensembles, namely the soft configura-
tion model (SCM) [8], (soft) random geometric graphs (RGGs) on
a circle [9,10], and Erdős–Rényi (ER) random graphs [11], appear
as degenerate regimes in the model. Table 1 shows all the model
regimes, the total of six. Each regime is defined by the values of
only two parameters: γ , which is the expected exponent of the
power-law degree distribution, and temperature T , the parameter
controlling the strength of clustering in the network.

Researchers in different disciplines may benefit from the
use of random hyperbolic graphs in their work. Yet the full
implementation of the model and all its regimes is a tricky
business, which involves dealing with some delicate details, due
to a variety of internal parameters and their interactions over the
six regimes. In Section 2–4we describe the implementation details
of the model, including how all the parameters are calculated
in each regime. A good match between the values of expected
graph properties and their observed values in generated graphs is
confirmed in Section 5.

2. Input parameters and coordinates

2.1. Input parameters

The program input parameters are the number of nodes N ,
the target expected average degree k̄ of the network, the target
expected power-law exponent γ of the degree distribution, and
temperature T . The combination of γ and T values will define
the graph ensemble from which generated networks are sampled
(Table 1).

Given the input parameters, the graph generation process
consists of three steps:

1. Compute the internal parameters, such as the radius R of the
hyperbolic disk occupied by nodes, as functions of the input
parameter values, Sections 3 and 4.

2. Assign to all nodes their angular and radial coordinates on the
hyperbolic plane, Section 2.2.

3. Connect each node pair by an edge with probability (the
connection probability), which is a function of the coordinates
of the two nodes, Sections 3 and 4.

2.2. Coordinate sampling

The assignment of node coordinates is done as follows in all the
six regimes.

Angular coordinates θ of nodes are assigned by sampling them
uniformly at random from interval [0, 2π), i.e., the angular node
density is uniform ρ(θ) = 1/(2π).

Radial coordinates r ∈ [0, R], where R is the radius of the
hyperbolic disk, are sampled from the following distribution,
which is nearly exponential with exponent α > 0,

ρ(r) = α
sinhαr

coshαR − 1
≈ αeα(r−R). (1)

The calculation of internal parameterR is described in detail below;
it is different in different regimes. Internal parameterα depends on
the expected exponent γ of the power distribution P(k) ∼ k−γ of
nodes degrees k in generated graphs, and on the curvature of the
hyperbolic space ζ =

√
−K , which is set to ζ = 1 by default. For

temperatures T ≤ 1, this relationship is given by

γ = 2
α

ζ
+ 1, (2)

while for T > 1 it becomes

γ = 2
α

ζ
T + 1. (3)

To sample radial coordinates r according to the distribution in
Eq. (1), the inverse transform sampling is used: first a randomvalue
Ui is sampled from the uniform distribution on [0, 1], and then the
radial coordinate of node i is set to

ri =
1
α

acosh (1 + (coshαR − 1) Ui) , for i = 1, . . . ,N . (4)

3. Regimes with finite γ ≥ 2

3.1. T ∈ (0, ∞): soft hyperbolic random geometric graphs

This is the most general regime in the model, from which
all other regimes can be obtained as limit cases. The connection
probability in this case is

p(x) =
1

1 + eβ(ζ/2)(x−R)
, (5)

where β = 1/T , and R is the radius of the hyperbolic disk occupied
by nodes. The hyperbolic distance x between two nodes at polar
coordinates (r, θ) and (r ′, θ ′) is given by

x =
1
ζ
arccosh


cosh ζ r cosh ζ r ′

− sinh ζ r sinh ζ r ′ cos∆θ

, (6)

where ∆θ = π − |π − |θ − θ ′
|| is the angular distance between

the nodes. To calculate the expected degree of a node at radial
coordinate r , without loss of generality its angular coordinate can
be set to zero, θ = 0, so that its expected degree can be written as

k̄(r) =
N
π

 R

0
ρ(r ′)

 π

0
p(x) dθ ′dr ′. (7)
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The expected average degree in the network is then

k̄ =

 R

0
ρ(r) k̄(r)dr

=
N
π

 R

0
ρ(r)

 R

0
ρ(r ′)

 π

0
p(x) dθ ′dr ′dr. (8)

Given user-specified values of input parameters N , β = 1/T , ζ
and k̄, the last equation is solved for R using the bisection method
in combination with numeric evaluation of the integrals in the
equation. The MISER Monte Carlo algorithm from the GSL library
is used to compute the multidimensional integral in Eq. (8). The
iterative bisection procedure to find R stops when the difference
between the value of the computed integral in Eq. (8) and the target
value of k̄ is smaller than a threshold that is set to 10−2 by default.

3.2. Limit T → 0: hyperbolic random geometric graphs

In the T → 0 (β → ∞) limit, the connection probability in
Eq. (5) becomes

p(x) = Θ(R − x), (9)

whereΘ(x) is theHeaviside step function,meaning that two nodes
are connected if the hyperbolic distance x between them is less
than R, or they are not connected otherwise. The expected average
degree in the network is given by the same Eq. (8), but with p(x)
in the last equation. The value of R is determined using the same
procedure as in Section 3.1. The only difference is that function p(x)
is given by Eq. (9).

3.3. Limit T → ∞: soft configuration model

According to Eq. (3), in the T → ∞ limit with finite α, to have
finite γ , curvature should also go to infinity, ζ → ∞, such that
η = ζ/T is finite, and instead of Eq. (3) one gets

γ = 2
α

η
+ 1. (10)

More importantly, one can show that as a result of ζ → ∞, the
expression for hyperbolic distance x between two nodes in Eq. (6)
degenerates to

x = r + r ′, (11)

meaning that in the T → ∞ regime the angular coordinates are
completely ignored. The connection probability becomes

p(r, r ′) =
1

1 + e(η/2)(r+r ′−R)
, (12)

and the expected average degree in the network is

k̄ = N
 R

0
ρ(r)

 R

0
ρ(r ′) p(r, r ′) dr ′dr. (13)

The value of R is determined using the same combination of
the bisection method and numeric integration as in the previous
section, except it is applied to Eq. (13).

4. Regimes with infinite γ → ∞

While in the T → ∞ limit the angular coordinates are ignored,
in the γ → ∞ limit the radial coordinates are ignored. One can
show this formally by observing that in this limit the radial node
density approaches a delta function—all nodes are placed at the
boundary at infinity of the hyperbolic plane, meaning that only
angular coordinates determine distances between nodes.

4.1. T ∈ (0, ∞): soft spherical random geometric graphs

In this most general case with infinite γ , one can show that the
connection probability in Eq. (5) degenerates to

p(θ, θ ′) =
1

1 + λ


∆θ
π

β
, (14)

where∆θ = π −|π −|θ −θ ′
|| is the angular distance between the

two nodes as before, while λ is a parameter controlling the average
degree k̄ in the network, analogous toR in the regimeswith finiteγ .
Without loss of generality we can set θ = 0, so that the expression
for k̄ is

k̄ =
N
π

 π

0

1

1 + λ


θ ′

π

β
dθ ′

= N2F1(1, T ; T + 1; −λ), (15)

where 2F1 is the Gauss hypergeometric function, and T = 1/β . In
the special case with T = 1, the last expression simplifies to

k̄
N

=
log(1 + λ)

λ
. (16)

If T ≠ 1, the hypergeometric function in Eq. (15) cannot be
evaluated using the GSL library, because the 2F1 evaluation in
the library is implemented only for the case where the fourth
argument of the function (−λ in Eq. (15)) is between −1 and 1,
while for sufficiently largeN/k̄, λ is always larger than 1 in Eq. (15).
To avoid this difficulty, the following transformation is used [12]:

k̄
N

= 2F1(1, T ; T + 1; −λ)

=
1

λ + 1
T

T − 1 2F1


1, 1; 2 − T ;

1
λ + 1


+

1
λT

πT
sinπT

. (17)

If T > 1 is an integer, the second term in (17) diverges due to
the sin function in the denominator, while the first term diverges
because the third parameter of the 2F1 function is a non-positive
integer. Hence, for integer values of temperature T > 1, their value
is approximated by T + ϵ, where ϵ is set to 10−6 by default. The
error caused by this approximation is negligible. Eq. (17) (or (16) if
T = 1) is then numerically solved forλ using the bisectionmethod,
yielding the target value of k̄ in Eq. (15).

4.2. Limit T → 0: spherical random geometric graphs

One can see from Eq. (17) that the solution for λ at small T ≪ 1
scales with N/k̄ as λ = (N/k̄)β , β = 1/T . Therefore for β ≫ 1 the
connection probability in Eq. (14) can be written as

p(θ, θ ′) =
1

1 +


N
k̄

∆θ
π

β
, (18)

which in the β → ∞ limit becomes

p(θ, θ ′) = Θ


1 −

N∆θ

k̄π


, (19)

meaning that two nodes are connected if the angular distance ∆θ
between them is smaller than π k̄/N ,

∆θ < π
k̄
N

, (20)

or they are not connected otherwise. This connectivity threshold
ensures that the expected average degree in the network is k̄.
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Table 2
Observed properties in generated graphs (mean ± std_dev for 103 graph samples) with target
average degree k̄ = 10.

(a) γ = 2. (b) γ = 3.

(c) γ = ∞.

Fig. 1. Observed degree distributions in generated networks of size N = 104 and target average degree k̄ = 10. The results are averaged across 103 generated graphs for
each combinations of the parameters.

4.3. Limit T → ∞: Erdős–Rényi graphs

In this most degenerate regime, both angular and radial coordi-
nates are completely ignored. This regime is formally achieved by
keeping both α and ζ finite while letting T → ∞. One can then
show that the connection probability in Eq. (5) degenerates to

p(x) =
1

1 +
N
k̄

, (21)

which for sparse graphs with k̄ ≪ N tends to p(x) = k̄/N , i.e., the
connection probability in classical (Erdős–Rényi) random graphs.

5. Simulations

Tables 2(a) and (b) show, respectively, the average degree and
clustering values in generated graphs for different regimes, 103

samples in each regime. All the regimes match the target average
degree k̄ = 10, although low values of γ lead to much higher
fluctuations. For any γ > 2, average clustering decreases with
temperature from a maximum at T = 0 to zero at T → ∞.

Fig. 1 shows the observed distribution of node degrees for three
different values of γ . As expected, for finite γ , distributions follow
a power-law P(k) ∼ k−γ . In the limit at γ → ∞ the observed
degree distributions follow exactly the Poisson distribution with
mean µ = k̄.

Fig. 2 shows clustering in generated graphs. For finite γ , low-
degree nodes have stronger clustering than high-degree nodes. In
the case of γ → ∞, all nodes have similar clustering values.
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(a) γ = 2. (b) γ = 3.

(c) γ = ∞.

Fig. 2. Observed clustering in generated networks of size N = 104 and target average degree k̄ = 10. The results are averaged across 103 generated graphs for each
combinations of the parameters.
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