
Resilience of Deployed TCP to Blind FIN Attacks

Matthew Luckie

October 16, 2017

1 Introduction
In prior work we conducted in 2015 [3], we considered the resilience of deployed TCP implen-
tations to blind in-window RST, SYN, and data attacks. These three attacks and defenses to the
attacks were previously described in RFC5961 [4]. In this report, we consider the resilience of
deployed TCP implementations to blind in-window FIN attacks, an attack not explicitly covered in
RFC5961, where an off-path adversary disrupts an established connection by sending a packet that
the victim believes came from its peer, causing the connection to be prematurely closed. We ex-
tended scamper [2], a parallelized packet prober with existing TCP behaviour inference capability,
to add an active measurement test that infers whether or not a TCP implementation will accept a
FIN packet that contains an acknowledgement value that should cause the receiver to discard the
packet. We tested operating systems (and middleboxes deployed in front) of 4397 webservers in the
wild in September 2017 and found 18% of tested connections were vulnerable to in-window FIN at-
tack packets, consistent with our prior measurements testing the resilience of TCP implementations
to blind in-window RST, SYN, and data attacks.

2 Method
Our method to test the resilience of deployed TCP to blind FIN attacks is similar to the method we
used in prior work [3] to test response to blind data packets. We adopted an oracle-based approach
by simulating a blind FIN attack on a TCP connection that we established. We broke the first
segment of data (the HTTP GET or the first packet in the TLS handshake) into two pieces, and then
sent the following sequence: (1) we sent the first piece with an acknowledgment number expected
by the receiver, (2) we sent a FIN packet with a sequence number ahead of the receiver’s rcv.nxt
(leaving a hole for the second piece) and an acknowledgment number outside of the acceptable
range defined by RFC 5961, and (3) we sent the second piece with an acknowledgment number
expected by the receiver. We sent the FIN a second time, with a two second delay, to account for
packet loss. If the receiver accepted the FIN packet with an invalid acknowledgement number, the
second piece will fill a hole and the receiver will send an acknowledgement for the FIN.

Figure 1 illustrates our approach with three primary test outcomes. First, as in (a) in figure 1,
the server might send a challenge ACK in response to the FIN packets but otherwise discard the
FIN, as the ACK the server eventually sends after receiving the second piece of data does not
also cover the FIN. This outcome indicates the server is not vulnerable to FIN packets that could

1



(challenged FINs)

Pause)

(2 Second
Pause)

Client

DATA 1:1(60)

Server

ACK 1:61

(a)

FIN 121:−70000

ACK 1:61

(b)

(c)

FIN 121:−70000

ACK 1:61

(d)

(e)

DATA 61:1(60)

ACK 1:121

(f)

(g)

(a) resilient

(2 Second
Pause)

(2 Second
Pause)

Client

DATA 1:1(60)

Server

ACK 1:61

(a)

FIN 121:−70000

ACK 1:61

(b)

(c)

FIN 121:−70000

ACK 1:61

(d)

(e)

DATA 61:1(60)

ACK 1:122

(f)

(h)

(b) not resilient

(2 Second
Pause)

(2 Second
Pause)

Client

DATA 1:1(60)

Server

ACK 1:61

(a)

FIN 121:−70000

(b)

FIN 121:−70000
(d)

DATA 61:1(60)

ACK 1:121

(f)

(g)

(c) resilient
(ignored FINs)

(2 Second

Figure 1: Overview of our blind FIN test. We break the first segment of data for the connection
into three pieces. After the TCP handshake, we send the first piece (a) with an expected acknowl-
edgment number, and then send the FIN (b) with an invalid acknowledgment number. We send the
FIN twice to account for potential packet loss (b, d), and then the second piece (f) with an expected
acknowledgment number. If the server rejected the FIN, then the ACK we receive will be just for
the data contained in (f), as in (g). If the server accepted the FIN, then the ACK we receive will be
for both the data contained in (f) and the FIN (b, d), as in (h). If the server ignored the FIN, then the
ACK we receive will be just for the data contained in (f), as in (g), and we will not receive ACKs
in response to the FINs we send.

have come from a blind attacker. Second, as in (b) in figure 1, the server might ACK the FIN
packet as well as the second piece of data. This outcome indicates the server is vulnerable to FIN
packets that could have come from a blind attacker. Third, as in (c) in figure 1, the server might
not send any challenge ACKs in response to the FIN packets, and ignore the FIN, as the ACK the
server eventually sends after receiving the second piece of data does not also cover the FIN. This
outcome indicates the server is not vulnerable to FIN packets that could have come from a blind
attacker. Finally, not shown in figure 1, the server might reset the connection in response to the
FIN packet, which we detect when it sends a RST packet with a sequence number matching the
incorrect acknowledgement value we set in our FIN packet.

3 Data
To test commodity TCP stacks as deployed in the wild, we established connections to websites
in the Alexa list [1], and observed the behavior of their TCP implementations in response to our

2



Result Frequency Fraction
Accepted FIN 792 18.0%
Reset (ack-blind) 32 0.7%
Vulnerable 824 18.7%
Ignored (not vulnerable) 1205 27.4%
Challenge ACK (not vulnerable) 2283 51.9%
Not Vulnerable 3488 79.3%
Early FIN 8 0.2%
Early RST 20 0.5%
No connection 57 1.3%
Other 85 1.9%
Total 4397 100%

Table 1: Overview of results for the webserver population testing from cld-us VP in September
2015. 18.0% of the tested population incorrectly accepted the FIN packet, and 0.7% incorrectly
reset the connection, instead of ignoring or challenging the FIN packet.

oracle’s probing packets. We do not claim that our results are representative of any particular pop-
ulation; we tested websites to understand properties of currently deployed web operating systems
and middleboxes. Nevertheless, we consider our results indicative of current likely behavior in
other populations, including systems that support long-lived protocols including ssh and rsync.

From the cld-us Archiplego measurement vantage point on San Diego, we chose 5K random
websites from the Alexa list. We sent a DNS query for each web site and used the first returned
IPv4 address for the duration of our probing. Further, if multiple sites shared an IP address, we
only probed the IP address once. This process yielded 4397 target IP addresses.

We then used the websites and target IP addresses collected to test those systems for resilience
to FIN packets that could have come from a blind attacker.

4 Results
Table 1 summarizes the results for the webserver population we tested. We were able to test 98.1%
of the webservers; we could not establish a TCP connection to other webservers, or they sent an
early RST before we could complete our test. The overall results are encouraging as most (79.3%)
did not acknowledge the FIN packet. Nevertheless, 18.7% of the tested population were vulnerable
to FIN packets that could have come from a blinded attacker.

5 Code Release
We publicly release our code as part of the scamper package:
http://www.caida.org/tools/measurement/scamper/.

3



References
[1] Alexa. Top 1,000,000 sites. http://www.alexa.com/topsites.

[2] M. Luckie. Scamper: a scalable and extensible packet prober for active measurement of the
internet. In Proceedings of the 10th ACM SIGCOMM conference on Internet Measurement
(IMC), pages 239–245, Nov. 2010.

[3] M. Luckie, R. Beverly, T. Wu, M. Allman, and k claffy. Resilience of deployed TCP to blind
attacks. In Proceedings of the 15th ACM SIGCOMM Conference on Internet Measurement
(IMC), pages 13–26, Oct. 2015.

[4] A. Ramaiah, R. Stewart, and M. Dalal. Improving TCP’s robustness to blind in-window attacks.
RFC 5961, Aug. 2010.

4


