
An Empirical Study of Mobile Network Behavior and
Application Performance in the Wild

Shiwei Zhang
Southern University of Science and

Technology, P. R. China
Peng Cheng Laboratory, P. R. China

zhangsw@mail.sustech.edu.cn

Weichao Li*
Southern University of Science and

Technology, P. R. China
Peng Cheng Laboratory, P. R. China

liwc@sustech.edu.cn

Daoyuan Wu
Singapore Management University,

Singapore
dywu.2015@smu.edu.sg

Bo Jin
Southern University of Science and

Technology, P. R. China
Peng Cheng Laboratory, P. R. China

jinb@sustech.edu.cn

Rocky K. C. Chang
The Hong Kong Polytechnic

University, Hong Kong
csrchang@comp.polyu.edu.hk

Debin Gao
Singapore Management University,

Singapore
dbgao@smu.edu.sg

Yi Wang
Southern University of Science and

Technology, P. R. China
Peng Cheng Laboratory, P. R. China

wy@ieee.org

Ricky K. P. Mok
University of California, San Diego &

CAIDA, USA
cskpmok@caida.org

ABSTRACT
Monitoring mobile network performance is critical for optimizing
the QoE of mobile apps. Until now, few studies have considered the
actual network performance that mobile apps experience in a per-app
or per-server granularity. In this paper, we analyze a two-year-long
dataset collected by a crowdsourcing per-app measurement tool to
gain new insights into mobile network behavior and application per-
formance. We observe that only a small portion of WiFi networks can
work in high-speed mode, and more than one-third of the observed
ISPs still have not deployed 4G networks. For cellular networks,
the DNS settings on smartphones can have a significant impact on
mobile app network performance. Moreover, we notice that instant
messaging (IM) and voice over IP (VoIP) services nowadays are
not as performant as Web services, because the traffic using XMPP
experiences longer latencies than HTTPS. We propose an automatic
performance degradation detection and localization method for find-
ing possible network problems in our huge, imbalanced and sparse
dataset. Our evaluation and case studies show that our method is
effective and the running time is acceptable.

ACM Reference Format:
Shiwei Zhang, Weichao Li, Daoyuan Wu, Bo Jin, Rocky K. C. Chang,
Debin Gao, Yi Wang, and Ricky K. P. Mok. 2019. An Empirical Study of
Mobile Network Behavior and Application Performance in the Wild. In

*Weichao Li is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6778-3/19/06. . . $15.00
https://doi.org/10.1145/3326285.3329039

IEEE/ACM International Symposium on Quality of Service (IWQoS ’19),
June 24–25, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA, 10 pages.
https://doi.org/10.1145/3326285.3329039

1 INTRODUCTION
Measuring and understanding mobile users’ received network
performance is an essential step towards improving their qual-
ity of experience (QoE). Previous research often adopted con-
trolled testbeds or experiments, which allow them to make com-
prehensive and low-level observations, e.g., down to the radio
layer [21, 32, 33, 52]. These studies conducted in-depth performance
analysis about WiFi [22, 40, 50], cellular [16, 27, 30], and specific
scenarios [28, 35, 39]. However, such controlled approaches are
generally not scalable to real users due to the difficulty of deploying
them on customized or rooted devices.

To capture real users’ QoE, recent works have leveraged crowd-
sourcing by deploying measurement apps to end users’ phones. For
example, Huang et al. designed two apps to understand the perfor-
mance of 3G and 4G networks [26, 29], respectively. Sommers and
Barford [48] analyzed crowdsourced data from speedtest.net
to compare the WiFi and cellular performance. More recently, Mo-
bilyzer [38] was proposed to further speed up the app development
and improve their capabilities, and Netalyzr [54] was used to charac-
terize middlebox behavior in cellular networks. However, due to the
restriction of collecting other on-device apps’ network traces, these
Speedtest-like crowdsourcing measurements can analyze only the
end-to-end performance between their deployed apps and predefined
or user-specified servers.

In this paper, we aim to perform an empirical study of real users’
mobile network and application performance by utilizing a unique
crowdsourcing dataset.1 This dataset was collected via MopEye
[57], an Android app for monitoring per-app network performance

1Please refer to https://github.com/daoyuan14/mopeyeDataset.

https://doi.org/10.1145/3326285.3329039
https://doi.org/10.1145/3326285.3329039

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Zhang and Li, et al.

without root privileges. More specifically, MopEye leverages the
VpnService API [10] to capture traffic initiated by all other on-
device apps, and measure their performance between the smartphone
and the app servers.

In summary, we make the following two contributions:

• We empirically analyze MopEye’s two-year-long dataset,
which comprises a large number of measurements (i.e., 20 mil-
lion records from 11,200 users in 173 countries). Compared
to previous measurement studies [14, 22, 27], our dataset is
superior in scale (653 ISPs in 173 countries vs. several ISPs
in one country), timespan (23 months vs. dozens of hours or
days), and diversity (1,615 vs. a few smartphone models).

• We propose an automatic method to detect and localize pos-
sible performance degradations from massive measurement
data, which is very useful for both app developers and net-
work administrators to quickly identify events that could
hurt users’ QoE. However, this is difficult because the mea-
surements collected by MopEye are individual snapshots of
end-to-end network status, we have to handle the potential
data imbalance and sparsity. To overcome these challenges,
we modify the Apriori algorithm [13], a common method
in association rule mining, to detect network anomalies by
setting up restrictions on support requirements. After that, we
perform post-processing to identify the most likely factors
that degrade performance. Our evaluation and case studies
show that our method is effective and the running time is
acceptable.

Besides our methodological contributions in processing a large-
scale crowdsourced dataset and detecting performance degradations,
we also make the following insightful observations about mobile
network usage and app behaviors:

• Overall, WiFi networks still outperform cellular networks in
terms of shorter network latency. Although it is claimed that
IEEE 802.11ac equipments have become mainstream in the
market [11], only a small fraction (6%) of observed networks
exceeded the PHY rates of 300Mbps. For cellular networks,
4G technology dominated the MopEye measurements. How-
ever, although 5G technology is getting closer to deployment,
more than one-third of the observed ISPs still have not de-
ployed 4G networks, most of which were countries in Africa
and Asia.

• Our DNS analysis showed that using external DNS resolvers
can result in poorer mobile app performance, especially when
the resolvers and end users are not located in the same coun-
try.

• Among the top four popular protocols seen by MopEye
(HTTPS, HTTP, DNS, and XMPP), a common protocol for
IM and VoIP applications [25]), XMPP performed the worst.
On the other hand, HTTPS exhibited shorter network latency
compared to HTTP. For the app server deployment, we found
that advertisement servers usually had longer latency and
impaired performance if they fully loaded the advertisements.

• IP anycast does not always have positive effect on reducing
network latency. But our study shows that service providers
can still benefit from it even if DNS-based redirecting is
enabled.

Figure 1: An overview of MopEye.

In the rest of this paper, we first compare traditional smartphone-
based crowdsourcing measurement with MopEye in §2. We describe
our dataset in §3, and report its new findings on mobile network be-
havior and application performance in §4. We propose a performance
anomaly detection method and evaluate it in §5. We summarize re-
lated works in §6 and conclude the paper in §7.

2 BACKGROUND
Smartphone-based crowdsourcing measurement apps (e.g., Ookla
Speedtest app[7], MobiPerf [5], and Netalyzr [6]) have attracted
a large number of users. Notably, the Ookla Speedtest app[7] has
recorded over 100 million downloads on Google Play. These apps
often employ the landline measurement paradigm, i.e., measuring
network paths only to fixed measurement servers or user-specified
remote endpoints. For example, Ookla deployed 7,000+ measure-
ment servers worldwide MobiPerf relied on the M-Lab platform
(200+ servers) and server IP addresses specified by the users. Hence,
the measurement results they collected correspond to network per-
formance only toward certain (mostly measurement) servers, rather
than actual network performance perceived by users.

Recently, some VPN-based measurement apps (e.g., Mop-
Eye [57], Haystack [41], and AntMonitor [31]) exploited the Vp-
nService API available on Android 4.0 to enable in-situ mobile
network measurement, rather than carrying out active measurements
to a dedicated set of destinations. MopEye is the first and still the
only one of these apps to provide network performance data, while
others only collect data for privacy leakage detection. Therefore,
in this paper, we focus on MopEye as a representative VPN-based
measurement apps. As illustrated in Fig. 1, MopEye maintains and
passively monitors a VPN tunnel via the VpnService API. Once
such a VPN tunnel is established, other apps’ traffic will be redi-
rected by the OS to MopEye. Hence, for each network connection,
MopEye can record the corresponding app package name, the des-
tination IP address, and the port number. It also acts as a relay to
forward network traffic between user apps and the Internet.

By applying typical passive measurement techniques, such as
computing TCP 3-way handshake times, and DNS response times,
MopEye can estimate the round-trip time (RTT) for external network
paths between the smartphone and remote servers for each user app.

An Empirical Study of Mobile Network Behavior and Application Performance in the WildIWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

Such passive measurements better reflect the actual network perfor-
mance experienced by the users. For more details about MopEye,
please refer to [57].

3 DATASET
In this paper, we analyze the data collected by MopEye from June 1
2016 to May 31 20182.

3.1 Data features
Table 1 summarizes the information that MopEye collects, and we
call each attribute name a feature. User information is collected when
a user downloads and installs MopEye. The network information
are recorded every time MopEye is enabled or the network state is
changed. For every target app server, MopEye will measure it once.
More details about the features are described in [57].

Table 1: The features collected in the MopEye measurements.

Feature
Information

Group Description

DeviceId

User
Information

The unique ID for the device, generated
by Android

UserId
The unique ID for the user, generated by
backend server

CountrySim The registration country of the SIM card
Device The device model information
AndVer The version number of Android

Type

Network
Information

The network type of the access network
connection (e.g., WiFi or cellular net-
work types)

Name
The name of the cellular access
point, or the SSID of WiFi network

Longitude
& Latitude

The geo-location information of device

Speed The link speed of WiFi network

Time
The current timestamp when obtaining
the network status

Rtt

Measurement
and App

Information

The RTT of the measured network path
DestIP IP address of the server visited by the app

DestPort
Port number of the server visited by the
app

PkgName The package name of the measured app
Detail The domain accessed by the app

Signal
The signal strength that the smartphone
experienced when performing the mea-
surement

3.2 Dataset statistics
Country distribution. The dataset involves more than 11,200 users
from 173 countries worldwide. The top 15 user countries include
the United States (3,407 users), Indonesia (1,361 users), India (465
users), Malaysia (418 users), and the United Kingdom (407 users),
accounting for nearly three quarters of the total users. Besides the
user countries, MopEye also collects the geographical locations
where measurements are conducted. The geolocation information
shows that the MopEye measurements are performed across large
populated areas, notably North America, Europe, and Southeast
Asia.

Device details. In total, MopEye identified 1,615 different smart-
phone models from 226 manufacturers. According to the dataset,
the top 5 manufacturers (Samsung, LGE, Xiaomi, Huawei, and Mo-
torola) comprised around two-thirds of the total devices. Samsung
SM-G935F, Xiaomi Redmi Note 3, and Samsung SM-G930F were

2It is the latest dataset MopEye authors provided at the time of our study.

the most used smartphone models, which had 205, 153, and 139
users, respectively. We also observed significant Android OS frag-
mentation in the dataset. The percentages for Android 4, 5, 6, and 7
were 18.55%, 22.64%, 38.03%, and 20.04%, respectively. We only
found 95 Android 8 devices.

Applications measured. The dataset includes measurements of
17,059 apps. Among them, 1,197 apps contributed at least 1k mea-
surements, and Facebook (com.facebook.katana) the most
measured app, was measured 575,529 times. For the top 19 apps that
had more than 100k measurements, eight of them were developed by
Google and three by Facebook. Other popular apps included system
apps such as Clean Master and ES File Explorer, and communication
or social networking apps such as TextNow, Telegram, WhatsApp,
and WeChat.

Measurements collected. The dataset contains 19,694,295 RTT
measurements. 13,204,649 of which are for TCP connections used
by the apps, and the remaining 6,489,646 are for DNS mea-
surements. Altogether the dataset covers 286,404 destination IP
addresses, 90,902 destination server domains, 8,114 destination
server ports, and 3,106 DNS servers. The most accessed domain is
graph.facebook.com, with 533,698 connections (2.7% of all
connections).

Network types. 65.42% of the measurements were performed
from WiFi networks. Although MopEye cannot operate the IEEE
802.11 protocols through system APIs directly, it does collect the
link speed of WiFi networks. The dataset shows that only a very
small portion (5.94%) of measurements exceeded PHY rates of
300Mbps, and the highest speed that we observed was 1,083Mbps.
Low-speed WiFi networks (≤54Mbps) comprise more than 30%
of measurements. For cellular network measurements, a total of
ten network types were recorded. In our analysis, LTE dominated
MopEye’s cellular measurements: over 70% of the records. However,
among the 653 ISPs identified in the dataset, more than one-third of
the ISPs (238 ISPs) had no 4G measurements observed. These ISPs
belong to 39 countries, mainly in Africa and Asia.

3.3 Network performance overview
We first summarize the overall network performance observed. Our
analysis shows that 42.5% of the RTTs were below 50ms and 67%
were below 100ms. Moreover, 18.4% of the measurements suffered
from relatively long RTTs (>200ms). Expectedly, WiFi showed
much better performance than that in cellular networks, especially
when network RTTs were short. For example, only a few RTT sam-
ples (2.4%) were smaller than 20ms for cellular access, but around
20% for WiFi. The median RTTs for WiFi and cellular networks
were 53ms and 75ms, respectively.

To better understand the QoS of current mobile networks, we fur-
ther calculated the median RTT and latency jitters of LTE networks
for major ISPs. We defined jitter as the median standard deviation
of the RTTs to the same destination IP in a measurement session.
Considering the fact that local DNS resolvers of cellular carriers are
very close to end users, with relatively short network latency [45]
and few content providers can deploy their services closer than that,
we calculate these metrics using DNS measurements to estimate
the performance upper bound that a cloud service provider might
achieve. The results of the top 15 ISPs observed is plotted in Fig 2.

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Zhang and Li, et al.

We can see that all ISPs can provide decent network latency even
for applications that have high requirements. For example, online
gamers often expect latency less than 100ms [17]. However, many
ISPs experienced high jitter, suggesting that users of cloud gaming
or VR streaming applications may still experience lags using today’s
4G network.

0 20 40 60 80 100
0

50

100

150

VERIZON (US)

AT&T (US)

TELKOMSEL (ID)

HOME (US)
BOOST MOBILE (US)

METROPCS (US)
JIO (IN)

SPRINT (US)
CRICKET (US)

SINGTEL (SG)

MY CELCOM (MY)

3 (GB)

T-MOBILE (US)

DU (AE)

DIGI (MY)

Median RTT (ms)

J
it
te
r
(m

s)

Figure 2: Median latency and network jitters of major ISPs.

4 MOBILE APPLICATIONS’ NETWORK
PERFORMANCE

4.1 Protocols
We next study the network performance for different protocols,
which can be identified through feature DestPort. Based on our
analysis, the most used destination ports are 443 and 80, correspond-
ing to HTTPS and HTTP, respectively. Port 53 (DNS) ranks next,
followed by ports 5222, 5223 and 5224 (used by XMPP). We plot
the distribution of their RTTs in Fig. 3 for these popular ports. As
expected, port 53 outperforms other three, because DNS resolvers
are usually placed as close as possible to end users. Moreover, port
443 performs better than port 80. A reasonable explanation is that
since modern websites have already migrated their major services
to HTTPS [36], HTTPS may receive more optimization in both
web servers and network policies. The XMPP ports, however, have
much longer network latency. For example, more than a half of the
measured RTTs are longer than 133ms. Implying much room for
improvement in today’s IM and VoIP services.

4.2 DNS performance
DNS plays a critical role in the performance of mobile applications
for name resolving, directing users to the closest cache servers and
performing load-balancing [19, 47, 58]. We are interested in how the
deployment of DNS servers affects the cellular network performance
experienced by users. Generally, most cellular ISPs provide DNS
services to their customers, which are usually deployed very close to
end users with private IP addresses. Besides, there are some public
DNS services such as Google Public DNS and OpenDNS, which are
hosted outside the ISPs and configured with public IP addresses.

By querying for geolocation and ISP information through on-line
services such as Geo IP Lookup [3], we obtained countries and ISP

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

RTT (ms)

C
D
F

80

443

53

522*

Figure 3: CDF plot of median RTT for different ports. “522*”
includes 5222, 5223, and 5224.

names of those DNS server IP addresses. We determined whether
they belonged to the same ISP and country as the mobile end users.
Accordingly, we classified the DNS server IP addresses into four
groups: i) private IPs; ii) public IPs owned by the same ISP; iii)
public IPs within the same country but owned by other ISPs; and
iv) public IPs in a different country. Here, the former two groups
could be local DNS servers while the latter two could be external
ones. Since we do not consider IP anycast in this section, we put
measurements using public DNS with IP anycast support into group
iv. In our data, the four groups contained 25%, 24%, 45%, and 6%
measurements, respectively.

Fig. 4 plots the distribution of DNS resolving time for the four
groups of DNS deployments. As shown, when the DNS servers are
located in different countries, users always experienceed higher DNS
query delays. For the other three groups of DNS servers within the
same country, they performed similarly, regardless of whether they
were hosted in the same ISP. Fig. 5 plots the CDF of network delays
experienced by mobile apps when using different types of DNS
servers. Significantly, mobile apps may experience poorer network
quality if DNS servers in other countries are used. For the other three
groups of DNS servers, mobile apps can experience comparably
short network latencies. More specifically, apps with local private
DNS servers performed slightly better than those cases where DNS
servers were hosted in the same ISP, and the same country. We
conclude that using third-party DNS resolvers (such as public DNS
services) may not improve mobile network performance, but could
result in deterioration if resolvers are not close to the end users.

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

Resolving Time (ms)

C
D
F

Private LDNS

Same ISP

Same country

Diff country

Figure 4: CDF plot of DNS resolution time for different DNS
deployments. The time includes both network delay and server
response time (e.g., its recursive querying time).

An Empirical Study of Mobile Network Behavior and Application Performance in the WildIWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

RTT (ms)

C
D
F

Private LDNS

Same ISP

Same country

Diff country

Figure 5: CDF plot of RTTs to app servers for different DNS
deployments.

To validate whether this conclusion is still reasonable for popu-
lar apps, we analyzed the network performance of Facebook and
YouTube. As illustrated in Fig. 6(a) and 6(b), although Facebook
performs similar when adopting different types of DNS resolvers,
both apps had shorter RTTs when using local private DNS resolvers
and longer RTTs for the cases in different countries. Such large con-
tent providers may have already optimized their server deployment
well enough, and end users are unlikly to improve performance by
switching to external DNS servers.

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

RTT (ms)

C
D
F

Private LDNS
Same ISP
Same country

Diff country

(a) Facebook.

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

RTT (ms)

C
D
F

Private LDNS
Same ISP
Same country

Diff country

(b) YouTube.

Figure 6: CDF plots of RTTs for Facebook and YouTube when
using different types of DNS resolvers.

4.3 Application servers
In order to serve more users and provide better performance, mod-
ern mobile apps are often served by hundreds of servers, which
is confirmed in our dataset. As demonstrated in Fig. 7, four of
the most popular apps (Facebook, YouTube, CleanMaster, and
TextNow) were observed with more than 10,000 unique IP ad-
dresses for the destination app servers. Those servers could be
owned by the app service providers themselves, third-party CDN
servers (e.g., cloudfront.net and cloudflare.com), adver-
tisement servers (e.g., adnxs.com and googlesyndication.
com), trackers including analytic and statistic services (e.g.,
quantserve.com and crashlytics.com), and other servers
that could not be identified. We used EasyList [2] to identify adver-
tisement and tracker domains.

Table 2 summarizes the percentage of measurements and median
RTTs of each type of server for the four aforementioned apps. For
Facebook and YouTube, the majority of network access went to
their own servers. But for CleanMaster and TextNow, the most

Fa
ce
bo
ok

Te
xt
N
ow

Yo
ut
ub
e

C
le
an
m
as
te
r

ES
fil
e
m
an
ag
er

G
oo
gl
e
Se
ar
ch

W
ea
th
er
C
ha
nn
el

W
ha
ts
ap
p

G
m
ai
l

Sa
m
su
ng
Em

ai
l

In
st
ag
ra
m

FB
M
es
se
ng
er

Sa
m
su
ng
C
lo
ud

W
ec
ha
t

Te
le
gr
am

0

10,000

20,000

30,000

#
u
n
iq
u
e
se
rv
er

IP
s

Figure 7: Number of unique server IP addresses for the top 15
apps with most measurement records.

visited servers were advertisement servers, accounting for 58.1%
and 54.7%, respectively. Moreover, advertisement servers usually
performed worse than their own servers for all four apps. This means
that improper design of apps (e.g., rendering GUI after fully loading
the advertisements) could prevent the apps from responding quickly,
resulting in QoE degradation.

Table 2: The roles, percentage of measurements, and median
RTTs of different server types for the four top apps.

App Server role Percentage Median RTT (ms)

Facebook

Own server 53.3% 54
3rd-party CDN 2.2% 86

Ad 9.6% 71
Tracker 3.1% 71

YouTube

Own server 81.5% 49
3rd-party CDN 0% n/a

Ad 1.1% 56
Tracker 0.9% 100

CleanMaster

Own server 13.0% 96
3rd-party CDN 0.9% 50

Ad 58.1% 96
Tracker 4.2% 79

TextNow

Own server 4.0% 66
3rd-party CDN 2.6% 80

Ad 54.7% 73
Tracker 10.4% 61

4.4 IP anycast deployment and performance
Many mobile applications employ geographically distributed content
delivery networks (CDNs) to reduce the latency for users to access
content. Assigning users to the nearest cache/replica is a key factor
in improving the CDN performance. Current approaches for server
selection include HTTP redirection, URL rewriting, anycast, and
DNS-based server redirecting [55]. We study the deployment and
performance of anycast servers used by mobile apps.

We first matched the destination IP addresses in the dataset with
the anycast IP addresses listed in the “2017-04” data from [1], which
was generated by the iGreedy algorithm [23]. We found that about
8.32% of the measurements (2.29% of all destination IP addresses)
connect to anycast servers. To fairly compare the performance be-
tween anycast and unicast, we considered the IP addresses belonging
to the same second-level domain (SLD), because they are likely un-
der the control of the same company. We show the results of some
typical SLDs in Table 3. In the table, the columns #Anycast and

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Zhang and Li, et al.

#Unicast represent the numbers of RTT measurements in which the
destination IP address was classified as anycast and unicast, respec-
tively. Ru, Ra, and ∆R represent the median RTT of unicast, anycast
IP addresses, and their difference (Ra − Ru), respectively.

Table 3: The deployment and performance of IP anycast in sev-
eral SLDs.

SLD #Unicast #Anycast Ru (ms) Ra (ms) ∆R (ms)
reddit.com 457 236 34 44 10

pinterest.com 5486 1079 61 39 -22
cloudflare.com 0 1629 n/a 47 n/a
googleapis.com 745881 0 45 n/a n/a

We found that some SLD anycast IP addresses have higher RTT
than unicast. One possible explanation is that anycast packets suffer
from some routing problems and result in suboptimal replicas [56],
while DNS-based redirection may already direct the user to the
nearest server. For validation, we employed the average number
of IP addresses for each domain and a robust regression method.
Here the number of IP addresses we treated as a measure of DNS-
based redirection utilization, and used robust regression to identify a
correlation between the performance gain from anycast and the uti-
lization of DNS-based redirection. We used rlm() from R package
MASS with default parameters to perform robust regression, which
internally uses the iteratively re-weighted least squares (IRLS) algo-
rithm [20] to build a linear model that assigns less weight to outlier
data to minimize their impact. We plot the 22 SLDs that had more
than 10 anycast IP addresses in our dataset in Figure 8.

The plot shows a relatively strong positive correlation, suggest-
ing that anycast can still significantly reduce latency to application
servers even when DNS-based redirection is deployed. It is reason-
able because many mobile users do not use their local DNS server
(as discussed in § 4.2), and thus the DNS-based redirection could
fail but IP anycast remains effective.

0 5 10 15 20 25

−50

0

50
r = 0.70

#IP per domain

P
er
fo
rm

an
ce

ga
in

(%
)

Outlier

Figure 8: Relationship between performance gain by using IP
anycast and the number of IP per domain. Each point is an
SLD. Outliers are identified by robust regression. r stands for
the Pearson correlation coefficient.

5 PERFORMANCE DEGRADATION
DETECTION

5.1 Challenges
So far, we have analyzed our dataset empirically and highlighted
our findings manually. However, it is a time-consuming task that

could miss a lot of meaningful events. Therefore, we need a method
to automatically detect and localize possible performance degrada-
tions. There are several challenges for this task. We summarize the
challenges as follows.

First of all, our dataset is highly imbalanced. Some users may
produce thousands of measurements, but others only contribute a
dozen. Owing to that, it is difficult to draw an unbiased conclusion
based on standard frequent item mining methods that focus only on
the number of records, because the majority of records may come
from a single user. A typical example is that 83.5% of the 16,868
HSPAP measurements for ISP Mobilis are from one user. If those
measurements are excluded, the median RTT decreases from 332ms
to 219ms.

The second challenge is the sparsity of our dataset. Although a
huge number of measurements and plenty of network information
were collected by MopEye, they are individual snapshots of end-to-
end network performance. We may not have enough observations for
some combinations of features. For example, small carriers and un-
common devices usually generate very few data samples. Therefore
we may not have enough historical records for time-series analysis.

The last challenge arises from the data volume. With the growth of
MopEye users, it is inevitable that more measurements are conducted
every day (e.g., MopEye recorded ∼130K measurements in June
2016 when MopEye was just released, and the number increased to
∼300K in April 2018). Accordingly, we need a scalable algorithm
to efficiently process the growing dataset.

5.2 Our method
We first introduce the notation used in our proposed method. As
discussed in §3.1, MopEye collects a set of features for each mea-
surement record. We define a property as a feature-value pair. For
example, a record with property “date:201706” means that it was
measured in June 2017. Similarly, a condition is defined as a group
of properties from different features. We use f (y) to express the
feature that a property y belongs to, and similarly F (x) to express
the set of features that the properties in condition x belong to. Note
that no two properties of a condition belong to the same feature, i.e.,
|x | = |F (x)| for any condition x .

Let D be the whole dataset. For a condition x , Dx represents
the records that match all properties in x , and Rx represents the
corresponding RTTs. Table 4 summarizes the notation used in this
section.

Table 4: Summary of notations.

Notation Description
f (y) The feature of a property y
F (x) The feature set of properties in a condition x
Dx The records that match all properties in a condition x
Rx The vector of RTTs in Dx
| · | The cardinality of a set or a vector

We propose a method based on the association rule mining tech-
niques. An association rule of the form “xa ⇒ xc” means if a
record contains all properties in xa , it is likely to contain xc . In prac-
tice, we often restrict the properties that can be included in xc . In
our tasks, we have xc represent the degradation or non-degradation
event, and xa represent the conditions that lead to the degradation.

An Empirical Study of Mobile Network Behavior and Application Performance in the WildIWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

However, since our dataset is collected worldwide and covers var-
ious kinds of networks, it is hard to label a record as degradation
or non-degradation. For example, a network latency of 200ms is
usually undesirable, but it is expected for 2G users or for users who
access websites located on a different continent.

Therefore instead of using pre-defined labels, we compare the
average performance of different properties under certain conditions
to find anomaly rules. We define performance degradation event as
follows:

DEFINITION 1. For a condition x and a property y such that
f (y) < F (x), if the median(Rx∪{y }) is significantly higher than
median(Rx) with enough support (§ 5.2.1), we say (x,y) is a perfor-
mance degradation event.

We employ the median absolute deviation (MAD), denoted by
MAD(Rx), as a measure of significance (the definition of support is
discussed in § 5.2.1). The goal of our method can be summarized
as: finding all possible degradations that meet the above criteria, and
automatically localizing the root cause. We modify the association
rule mining techniques to achieve the goal. Our method consists of
three steps. First, we find frequent items as in association rule mining.
Then, we detect performance degradations among frequent items
according to our definition of performance degradation. Finally, we
examine other possible root causes for each performance degradation
event to localize the root cause.

5.2.1 Frequent item mining. Frequent items are conditions that
meet some specific support requirements. Usually the support is de-
fined by a minimum requirement of the number of records, denoted
by n. However, the imbalanced nature of our data can tend to biased
conclusions, e.g., if most records come from a single user. So in
addition to a minimum number of records, we also require that the
unique number of users in Dx of a condition x is no less than 5, and
no single user takes up more than 50% of the records. We choose
n = 750 in our method. We give a rationale for choosing this value
in §5.4.1.

We use a modified Apriori algorithm to collect frequent items.
The original Apriori [13] is a popular algorithm which can find all
property combinations in a dataset that appear at least n times. Since
a minimum number of records is not sufficient to support our rules,
we add our requirements into the algorithm. We start with an initial
candidate set C0 = {∅}. In each iteration, we generate candidate
conditions

Ck =

x ∪ {y}

��������
x ∈ Ck−1,
f (y) < F (x),
|Dx∪{y } | > n,
Ux∪{y } > 5

by looping over all combinations of x ∈ Ck−1 and property y such
that f (y) < F (x), to prune the candidates that do not meet the support
requirement. Ux in the equation stands for the number of unique
users in Dx . The iteration ends when Ck = ∅. Finally, we filter all
candidates in

⋃k
i=0C

i by the last requirement that no single user
shall take up more than 50% of the records.

All frequent items can be found in this way because we have
the downward closure property [12], i.e., |Dx | > |Dx∪{y } | and
Ux > Ux∪{y } for any x and y. For the remaining requirement that
no single user shall take up more than 50% of the records, we cannot

add it in the pruning step since the downward closure property does
not hold for it. We thus drop the frequent items that do not meet this
requirement after all frequent items are mined.

5.2.2 Performance degradation detection. Recalling Defini-
tion 1, a performance degradation event is a frequent item x and a
property y, such that f (y) < F (x), x ∪ {y} is also a frequent item,
and median(Rx∪{y }) > median(Rx) + MAD(Rx). To find all per-
formance degradation events in our data, we loop over condition x
in frequent items and calculate ux = median(Rx) + MAD(Rx) as
the upper bound of normal performance under that condition. We
then find all properties y such that f (y) < F (x), and x ∪ {y} is also
a frequent item, and median(Rx∪{y }) > ux . As a result, such (x,y)
pairs are therefore performance degradation events by definition.

5.2.3 Root cause identification. Due to the imbalanced na-
ture of our crowdsourcing data, the property y in a detected
performance degradation event may not be the real cause of
the performance degradation event. For example, in our dataset,
median(Rtype:LTE,kernel:3.10.49) = 340, while for the overall RTT of
all LTE records, median(Rtype:LTE) = 73, and MAD(Rtype:LTE) = 36.
However, after inspecting the supporting data Dtype:LTE,kernel:3.10.49,
we found that 81.7% records also have “name:JIO4G”, while in the
complete dataset only 0.72% records have that property. We cannot
determine without further analysis if the root cause resides in the
Linux kernel version or in the carrier.

To help identify the root cause, the third step of our method
analyzes all possible causes of a performance degradation event.
We check every possible cause using criteria and hypothesis tests.
First, we calculate the marginal frequency Pz = |Dz | / |D | for every
property z. Then we group performance degradation events by their
supporting data Dx∪{y }. For each group and property z, f (z) <
F (x ∪ {y}), we calculate confidence = Pz |x∪{y } = |Dx∪{y,z } | /

|Dx∪{y } | and lift = confidence / Pz . If both the confidence and lift
are high for a property z, it may be another cause for the high latency
of the supporting data, because it appears in the supporting data
more frequently than elsewhere. In our settings, we require that
confidence > 0.2 and lift > 3. We then use Mann–Whitney U test
[37] to check if that property has a significant impact on the RTT of
the supporting data. For each property z with both high confidence
and lift, we partition the supporting data Dx∪{y } to Dx∪{y,z } and
Dx∪{y } \ Dx∪{y,z } and perform a Mann–Whitney U test on the
two subsets. The higher the p-value of the test, the less likely c is
a root cause of the performance degradation event. Finally, we sort
the performance degradation events by the minimum p-value of all z
that could possibly be another root cause of the high RTT of their
supporting data, so we can focus on the performance degradation
events that can be more independently explained.

5.3 Implementation details
5.3.1 Data preprocessing. A requirement for frequent items
mining techniques is that all items need to be discrete, so we need to
preprocess our data. For continuous features, we classify them into
several categories based on our knowledge and their distributions.
Specifically, we split WiFi link speed by 54Mbps and 300Mbps
based on the evolving stages of WiFi standards and split signal
strength using the quartiles, which are -72dbm, -56dbm and -39dbm.

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Zhang and Li, et al.

We also derive some features from the raw data to find the root
cause for performance degradation events in different aspects. For
example, we find the nearest city to the user’s location using the data
from GeoNames [9]. The full list of derived features is shown in
Table 5.

Table 5: Derived features.

Feature Derived from Description

City
Latitude &
Longitude

Nearest city of user location

DestCountry DestIP Registration country of the DestIP
DestISP DestIP Registration ISP of the DestIP
Brand Device The manufacturer of the device

Pkg2 PkgName
First 2 segments of the package name
(usually the company)

Pkg3 PkgName
First 3 segments of the package name
(usually the product series)

AndVer2 AndVer
The minor (first two parts) Android
version of user equipment

Kernel2 Kernel
The minor (first two parts) Linux
kernel version of user equipment

Date2 Time
The date rounded to month (yyyy-mm)
when obtaining the network status

Date3 Time
The date rounded to day (yyyy-mm-dd)
when obtaining the network status

5.3.2 Distributed computing. Our dataset is large, and our
method needs to find all possible performance degradation events
and examine all possible causes for each performance degradation
event. Thankfully, the algorithm we described in §5.2 can run in
parallel. We use the built-in parallel computing feature of Julia, the
language in which we implement our method, to run our system in a
cluster. We store our data in an SQLite database. Every computer in
the cluster has a full copy of all data. We organize our computation
tasks by processes. Different processes may or may not run on the
same computer. There are two types of processes: a scheduler and
several workers. The scheduler maintains a task queue, and distribute
tasks to and gathers results from workers. The workers connect to
the scheduler over networks and perform the actual computations.

The first step is frequent item mining. We run our modified Apri-
ori algorithm in parallel as follows. The scheduler starts with a
candidate set that contains only an empty set. For each element x in
the candidate set, the scheduler generates y so that f (y) < F (x), and
distributes this y to an idle worker. The worker scans the database
and reports if x ∪ {y} meets the requirement or not. If x ∪ {y} meets
the support requirement, the scheduler then adds it to the candidate
set and generates new tasks based on it.

Several optimizations can be applied in scheduling tasks. Notably
in the second step, a worker examines if a property y can increase
the median RTT of Dx by MAD(Rx). In our implementation, each
worker slices the relevant data Dx and loads it into memory at the
beginning of a task. The workers also remember their previous tasks
(x,y), and if the new task with condition x ′ has x ′ ⊆ x , it will
simply slice the previously loaded data, instead of reading it from
the disk. This optimization technique can saves a large number of
I/O operations.

5.4 Evaluation
5.4.1 Mathematical analysis. We first verify that our definition
of performance degradation is unlikely to cause false positives in a

simplified model. In the model there are k (k > 2) properties of a
featureY and each property has n independent records (n > 750). We
use y1, . . . ,yk to denote the properties of feature Y . We prove that if
there is no anomaly, i.e., all RTTs are subject to the same distribution
D independently, then we are unlikely to have a property y (f (y) =
Y) such that y meets our definition of performance degradation event
in the beginning of §5.2. We omit other conditions x in this analysis
and focus only on y.

Since we have a relatively large n, according to Laplace’s early
work [49], the distribution of the median is approximately a normal

distribution. i.e., median(Ryi)
i.i.d.
∼ N(µ,σ 2). The µ of median(Ryi)

is equal to the median of D. Given that we do not know the actual
distribution D of RTT, we use the empirical distribution D̂ of our
over 20 million records as an approximation, which has median = 72
and MAD = 42. It is also possible to estimate σ 2 of median(Ry)
[42], but the formula is complicated and tricky to implement. For
example, we need to apply some kind of smoothing to our empirical
distribution, to obtain a proper probability density function. For
simplicity, we use the sampling method to estimate σ 2 directly. That
is, we draw Si (1 ≤ i ≤ N = 100, 000, |S | = n) from the empirical
distribution D̂ and calculate the medians Mi = median(Si). Then
we use the sample variance

∑n
i=1(Mi −M̄)2 / (N −1) as the estimator

of σ 2.
We are now interested in the probability of false positives, i.e.,

the probability that our method thinks that there is an anomaly in
arbitrary data. According to the definition, a degradationy is detected
if median(Ry) ≥ median(R) + MAD(R). In principle median(Ry),
median(R) and MAD(R) are not independent. For simplicity, we
treat median(R) and MAD(R) as constants, denoted by µ and MAD,
respectively. Then the probability of flagging anomalies can be
calculated as follows:

P = Pr [∃i s .t . median(Ryi) ≥ µ +MAD]

= 1 −
∏

1≤i≤k
Pr [median(Ryi) < µ +MAD]

= 1 − Pr [
median(Ry1) − µ

σ 2 <
MAD
σ 2]k

= 1 − Pr (Z <
MAD
σ 2)k (Z ∼ N(0, 1))

= 1 − Φ(
MAD
σ 2)k

We calculate the probability with different values of k and n
using our estimated σ̂ 2. The result is shown in Table 6. As the
table shows, the probability is quite small when n > 750. Since we
have a minimum support requirement of 750 for every performance
degradation and many of them have actual support requirements
larger than 1500, we argue that our method is unlikely to yield false
positives.

Table 6: Probability table of false positives.

k = 2 k = 5 k = 15
n = 500 0.013 0.033 0.095
n = 750 2.02 ∗ 10−4 5.05 ∗ 10−4 1.51 ∗ 10−3
n = 1000 8.78 ∗ 10−7 2.19 ∗ 10−6 6.58 ∗ 10−6
n = 1500 1.75 ∗ 10−13 4.37 ∗ 10−13 1.31 ∗ 10−12

An Empirical Study of Mobile Network Behavior and Application Performance in the WildIWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA

5.4.2 Real-world performance degradation events. We
present two interesting cases found by our algorithm.

The first performance degradation event is related to time. Our
algorithm found that the RTT of the records whose destination IP ad-
dress geolocates to Germany and its ISP is Google, was higher than
usual around August 2017. It finds significant commonality among
the supporting data, suggesting that this performance degradation
event was likely not due to the random bias of a few users. We plot
the RTTs of the related records as a time series in Fig. 9.

2016-09 2017-01 2017-05 2017-09 2018-01 2018-05

0

50

100

150

21

79R
T
T

Figure 9: RTT of Google in Germany. Error bars use ±MAD.
The dashed lines are overall median ±MAD.

The second performance degradation event involved servers of
Microsoft Office Mobile. In our dataset, there are 96,997 records of
1,624 IPs that were accessed by com.microsoft.office.*.
Most of the IPs are registered under Microsoft Corporation, Amazon,
Akamai Technologies, and Cloudflare. Our algorithm found that in
terms of median RTT, servers that have IP registered under Amazon
performed much worse than others. We plot the CDF of RTTs of the
four ISPs in Fig. 10. We further inspected the supporting data and
found that most of the IPs registered under Amazon resolved from
the domain files.acompli.net and api.acompli.net,
which were accessed by Outlook.

0 50 100 150 200 250 300 350 400
0

0.2

0.4

0.6

0.8

1

RTT (ms)

C
D
F

Amazon

Microsoft

Cloudflare

Akamai

Figure 10: CDF plot of RTTs of different ISPs accessed by com.
microsoft.office.*.

6 RELATED WORKS
Monitoring mobile network performance through smartphone apps
has gained popularity among end users [4, 6, 8]. These apps or
platforms can be also applied to tackling various network perfor-
mance issues [38, 43, 44, 53, 54]. However, they are still based
on the landline measurement paradigm, which measures network
paths from smartphones to some particular measurement servers or
user-specified remote endpoints. Therefore, the measurement results

only correspond to the network performance between the users and
the target servers, but cannot capture performance that normal apps
may perceive. On the other hand, MopEye [57], Haystack [41], and
AntMonitor [31] leverage the VpnService API [10] to capture
the real app traffic, and can measure actual network performance
experienced by end users.

Network performance degradation is an important topic for net-
work providers and the methods to detect it have been long studied.
However, most of them use data that are continuous and homoge-
neous. For example, Yan et al. [59], Amrutkar et al. [15] and Ahmed
et al. [14] collected data in a continuous time span from the core
network of a single ISP. Sun et al. [51] adopted a Monte Carlo Tree
Search approach for anomaly localization, specifically for additive
key performance indicator (KPI) values.

Internet IP anycast as a widely used technique is also wildly
studied. Most studies have focused on root DNS servers and
CDNs [18, 34, 46]. Unlike our work, most previous measurements
used a limited number of probes, which may not accurately reflect
the experience of real users. For example, PlanetLab is used by [24].
However, almost all nodes of PlanetLab are located in universities,
which do not represent typical users.

7 CONCLUSION
In this paper, we analyzed a two-year-long dataset collected by Mop-
Eye. By inspecting the dataset in detail, we gained a much better
understanding of mobile network behavior and application perfor-
mance. For example, we found that very few WiFi networks can
exceed the PHY rates of 300Mbps, and DNS settings can directly
affect the mobile apps’ network performance in cellular networks.
Moreover, we noticed that traffic using the XMPP protocol had
higher latency than HTTPS, which implies that there is still room for
improvement for today’s IM and VoIP services. Besides the in-depth
analytic, we also proposed an automatic network performance degra-
dation detection method, which can help to find possible network
performance problems in a huge, imbalanced and sparse dataset.

ACKNOWLEDGMENTS
The authors would like to thank the anonymous reviewers for their
valuable comments. This work is partially supported by an NSFC
project grant (ref. no. 61872420), and the project of “PCL Future
Regional Network Facilities for Large-scale Experiments and Appli-
cations (ref. no. PCL2018KP001)”.

REFERENCES
[1] Anycast dataset. https://anycast.telecom-paristech.fr/dataset/.
[2] Easy List. https://easylist.to/.
[3] Geo IP Lookup. http://geoiplookup.net/.
[4] MobiPerf. http://www.mobiperf.com/.
[5] MobiPerf on Google Play. https://play.google.com/store/apps/details?id=com.

mobiperf.
[6] Netalyzr on Google Play. https://play.google.com/store/apps/details?id=edu.

berkeley.icsi.netalyzr.android.
[7] Speedtest by Ookla. https://play.google.com/store/apps/details?id=org.zwanoo.

android.speedtest.
[8] Speedtest.net on Google Play. https://play.google.com/store/apps/details?id=org.

zwanoo.android.speedtest.
[9] The GeoNames geographical database. http://geonames.org/.

[10] VpnService on Android Developers. http://developer.android.com/reference/
android/net/VpnService.html.

[11] Worldwide enterprise WLAN market sees steady growth in full year and Q4 2017,
according to IDC. https://www.idc.com/getdoc.jsp?containerId=prUS43599518.

https://anycast.telecom-paristech.fr/dataset/
https://easylist.to/
http://geoiplookup.net/
http://www.mobiperf.com/
https://play.google.com/store/apps/details?id=com.mobiperf
https://play.google.com/store/apps/details?id=com.mobiperf
https://play.google.com/store/apps/details?id=edu.berkeley.icsi.netalyzr.android
https://play.google.com/store/apps/details?id=edu.berkeley.icsi.netalyzr.android
https://play.google.com/store/apps/details?id=org.zwanoo.android.speedtest
https://play.google.com/store/apps/details?id=org.zwanoo.android.speedtest
https://play.google.com/store/apps/details?id=org.zwanoo.android.speedtest
https://play.google.com/store/apps/details?id=org.zwanoo.android.speedtest
http://geonames.org/
http://developer.android.com/reference/android/net/VpnService.html
http://developer.android.com/reference/android/net/VpnService.html
https://www.idc.com/getdoc.jsp?containerId=prUS43599518

IWQoS ’19, June 24–25, 2019, Phoenix, AZ, USA Zhang and Li, et al.

[12] R. Agrawal, T. Imieliński, and A. Swami. Mining association rules between sets of
items in large databases. In Proceedings of the 1993 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’93, pages 207–216. ACM, 1993.

[13] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In Proceedings of the 20th International Conference on Very Large
Data Bases, VLDB ’94, pages 487–499. Morgan Kaufmann Publishers Inc., 1994.

[14] F. Ahmed, J. Erman, Z. Ge, A. X. Liu, J. Wang, and H. Yan. Detecting and
localizing end-to-end performance degradation for cellular data services based
on TCP loss ratio and round trip time. IEEE/ACM Transactions on Networking,
25(6):3709–3722, Dec 2017.

[15] C. Amrutkar, M. Hiltunen, T. Jim, K. Joshi, O. Spatscheck, P. Traynor, and
S. Venkataraman. Why is my smartphone slow? on the fly diagnosis of underper-
formance on the mobile internet. In Proc. IEEE/IFIP DSN, 2013.

[16] D. Baltrunas, A. Elmokashfi, and A. Kvalbein. Measuring the reliability of mobile
broadband networks. In Proc. ACM IMC, 2014.

[17] W. Cai, R. Shea, C.-Y. Huang, K.-T. Chen, J. Liu, V. C. Leung, and C.-H. Hsu. The
future of cloud gaming [point of view]. Proceedings of the IEEE, 104(4):687–691,
2016.

[18] M. Calder, A. Flavel, E. Katz-Bassett, R. Mahajan, and J. Padhye. Analyzing the
performance of an anycast cdn. In Proceedings of the 2015 Internet Measurement
Conference, IMC ’15, pages 531–537, New York, NY, USA, 2015. ACM.

[19] V. Cardellini, M. Colajanni, and P. S. Yu. Dynamic load balancing on web-server
systems. 3(3):28–39, 1999.

[20] R. Chartrand and W. Yin. Iteratively reweighted algorithms for compressive
sensing. In 2008 IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 3869–3872, March 2008.

[21] Q. A. Chen, H. Luo, S. Rosen, Z. M. Mao, K. Iyer, J. Hui, K. Sontineni, and
K. Lau. QoE Doctor: Diagnosing mobile app QoE with automated UI control and
cross-layer analysis. In Proc. ACM IMC, 2014.

[22] X. Chen, R. Jin, K. Suh, B. Wang, and W. Wei. Network performance of smart
mobile handhelds in a university campus WiFi network. In Proc. ACM IMC, 2012.

[23] D. Cicalese, J. Augé, D. Joumblatt, T. Friedman, and D. Rossi. Characterizing ipv4
anycast adoption and deployment. In Proceedings of the 11th ACM Conference
on Emerging Networking Experiments and Technologies, CoNEXT ’15, pages
16:1–16:13, New York, NY, USA, 2015. ACM.

[24] D. Cicalese, J. Augé, D. Joumblatt, T. Friedman, and D. Rossi. Characterizing ipv4
anycast adoption and deployment. In Proceedings of the 11th ACM Conference
on Emerging Networking Experiments and Technologies, CoNEXT ’15, pages
16:1–16:13, New York, NY, USA, 2015. ACM.

[25] A. Hornsby and R. Walsh. From instant messaging to cloud computing, an XMPP
review. In IEEE International Symposium on Consumer Electronics (ISCE 2010),
pages 1–6, 2010.

[26] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck. A close
examination of performance and power characteristics of 4G LTE networks. In
Proc. ACM MobiSys, 2012.

[27] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu, Z. M. Mao, S. Sen, and O. Spatscheck.
An in-depth study of LTE: Effect of network protocol and application behavior on
performance. In Proc. ACM SIGCOMM, 2013.

[28] J. Huang, F. Qian, Z. M. Mao, S. Sen, and O. Spatscheck. Screen-off traffic
characterization and optimization in 3G/4G networks. In Proc. ACM IMC, 2012.

[29] J. Huang, Q. Xu, B. Tiwana, Z. M. Mao, M. Zhang, and P. Bahl. Anatomizing
application performance differences on smartphones. In Proc. ACM MobiSys,
2010.

[30] H. Jiang, Y. Wang, K. Lee, and I. Rhee. Tackling bufferbloat in 3G/4G networks.
In Proc. ACM IMC, 2012.

[31] A. Le, J. Varmarken, S. Langhoff, A. Shuba, M. Gjoka, and A. Markopoulou.
Antmonitor: A system for monitoring from mobile devices. In C2BD SIGCOMM,
2015.

[32] W. Li, R. K. P. Mok, D. Wu, and R. K. C. Chang. On the accuracy of smartphone-
based mobile network measurement. In 2015 IEEE Conference on Computer
Communications (INFOCOM), pages 370–378, April 2015.

[33] W. Li, D. Wu, R. K. Chang, and R. K. Mok. Demystifying and puncturing the
inflated delay in smartphone-based wifi network measurement. In Proceedings of
the 12th International on Conference on Emerging Networking EXperiments and
Technologies, CoNEXT ’16, pages 497–504, New York, NY, USA, 2016. ACM.

[34] Z. Li, D. Levin, N. Spring, and B. Bhattacharjee. Internet anycast: Performance,
problems, & potential. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, SIGCOMM ’18, pages 59–73,
New York, NY, USA, 2018. ACM.

[35] Q. Liu, K. Xu, H. Wang, M. Shen, L. Li, and Q. Xiao. Measurement, modeling,
and analysis of TCP in high-speed mobility scenarios. In Proc. IEEE ICDCS,
2016.

[36] G. LLC. HTTPS encryption on the web. https://transparencyreport.google.com/
https/.

[37] H. B. Mann and D. R. Whitney. On a test of whether one of two random variables
is stochastically larger than the other. 18(1):50–60, 1947.

[38] A. Nikravesh, H. Yao, S. Xu, D. Choffnes, and Z. M. Mao. Mobilyzer: An open
platform for controllable mobile network. In Proc. ACM MobiSys, 2015.

[39] A. Patro, S. Rayanchu, M. Griepentrog, Y. Ma, and S. Banerjee. Capturing mobile
experience in the wild: A tale of two apps. In Proc. ACM CoNEXT, 2013.

[40] C. Pei, Y. Zhao, G. Chen, R. Tang, Y. Meng, M. Ma, K. Ling, and D. Pei. WiFi
can be the weakest link of round trip network latency in the wild. In Proc. IEEE
INFOCOM, 2016.

[41] A. Razaghpanah, N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich, P. Gill, M. All-
man, and V. Paxso. Haystack: A multi-purpose mobile vantage point in user space.
Technical report, arXiv:1510.01419, 2016.

[42] P. R. Rider. Variance of the median of small samples from several special popula-
tions. 55(289):148–150, 1960.

[43] S. Rosen, H. Luo, Q. A. Chen, Z. M. Mao, J. Hui, A. Drake, and K. Lau. Dis-
covering fine-grained RRC state dynamics and performance impacts in cellular
networks. In Proc. ACM MobiCom, 2014.

[44] S. Rosen, H. Luo, Q. A. Chen, Z. M. Mao, J. Hui, A. Drake, and K. Lau. Under-
standing RRC state dynamics through client measurements with Mobilyzer. In
Proc. the 6th Annual Workshop on Wireless of the Students, by the Students, for
the Students (S3), 2014.

[45] J. P. Rula and F. E. Bustamante. Behind the curtain: Cellular DNS and content
replica selection. In Proc. ACM IMC, 2014.

[46] S. Sarat, V. Pappas, and A. Terzis. On the use of anycast in dns. In Proceedings
of 15th International Conference on Computer Communications and Networks,
pages 71–78, Oct 2006.

[47] A. Shaikh, R. Tewari, and M. Agrawal. On the effectiveness of DNS-based server
selection. In Proc. IEEE INFOCOM, 2001.

[48] J. Sommers and P. Barford. Cell vs. WiFi: On the performance of metro area
mobile connections. In Proc. ACM IMC, 2012.

[49] S. M. Stigler. Studies in the history of probability and statistics. XXXII: Laplace,
fisher and the discovery of the concept of sufficiency. 60(3):439–445, 1973.

[50] K. Sui, M. Zhou, D. Liu, M. Ma, D. Pei, Y. Zhao, Z. Li, and T. Moscibroda.
Characterizing and improving WiFi latency in large-scale operational networks.
In Proc. ACM MobiSys, 2016.

[51] Y. Sun, Y. Zhao, Y. Su, D. Liu, X. Nie, Y. Meng, S. Cheng, D. Pei, S. Zhang,
X. Qu, and X. Guo. Hotspot: Anomaly localization for additive KPIs with multi-
dimensional attributes. IEEE Access, 6:10909–10923, 2018.

[52] N. Vallina-Rodriguez, A. Auçinas, M. Almeida, Y. Grunenberger, K. Papagiannaki,
and J. Crowcroft. RILAnalyzer: A comprehensive 3G monitor on your phone. In
Proc. ACM IMC, 2013.

[53] N. Vallina-Rodriguez, N.Weaver, C. Kreibich, and V. Paxson. Netalyzr for Android:
Challenges and opportunities. In Proc. Workshop on Active Internet Measurements
(AIMS), 2014.

[54] N. Vallina-Rodriguez, S. Sundaresan, C. Kreibich, N. Weaver, and V. Paxson.
Beyond the radio: Illuminating the higher layers of mobile networks. In Proc.
ACM MobiSys, 2015.

[55] Z. Wang, J. Huang, and S. Rose. Evolution and challenges of DNS-based CDNs.
Digital Communications and Networks, 4(4):235 – 243, 2018.

[56] S. Wassermann, J. P. Rula, F. E. Bustamante, and P. Casas. Anycast on the move:
A look at mobile anycast performance. In Proc. TMA, 2018.

[57] D. Wu, R. K. C. Chang, W. Li, E. K. T. Cheng, and D. Gao. MopEye: Opportunistic
monitoring of per-app mobile network performance. In Proc. USENIX Annual
Technical Conference (ATC), pages 445–457, 2017.

[58] Q. Xu, J. Huang, Z. Wang, F. Qian, A. Gerber, and Z. M. Mao. Cellular data net-
work infrastructure characterization and implication on mobile content placement.
In Proc. ACM SIGMETRICS, 2011.

[59] H. Yan, A. Flavel, Z. Ge, A. Gerber, D. Massey, C. Papadopoulos, H. Shah, and
J. Yates. Argus: End-to-end service anomaly detection and localization from an
ISP’s point of view. In Proc. IEEE INFOCOM, 2012.

https://transparencyreport.google.com/https/
https://transparencyreport.google.com/https/

	Abstract
	1 Introduction
	2 Background
	3 Dataset
	3.1 Data features
	3.2 Dataset statistics
	3.3 Network performance overview

	4 Mobile Applications' Network Performance
	4.1 Protocols
	4.2 DNS performance
	4.3 Application servers
	4.4 IP anycast deployment and performance

	5 Performance degradation detection
	5.1 Challenges
	5.2 Our method
	5.3 Implementation details
	5.4 Evaluation

	6 Related works
	7 Conclusion
	Acknowledgments
	References

