Traceroute and BGP AS Path Incongruities

Young Hyun, Andre Broido, kc claffy

CAIDA, San Diego Supercomputer Center University of California, San Diego {youngh, broido, kc}@caida.org

Internetworking 2003, San Jose, June 2003

Background

Motivation

Methodology

- data collection
- initial processing

Analysis

- exchange point ASes
- ASes under common ownership
- remaining causes

Conclusions

Background

- AS-level Internet topology is very useful
 - for studying growth, performance, resiliency, convergence times
 - for designing routing protocols
- complete, up-to-date topology not available
 - only two practical sources of *partial* topology:
 - * BGP tables (e.g., at RouteViews and RIPE)
 - * AS paths derived from traceroute paths
- most analysis/modeling of Internet topology based on BGP AS paths

Motivation

Are Internet topologies based on BGP AS paths valid?

- answer by comparing two topology sources: BGP tables and traceroute paths
- simplistically: BGP AS path = specified (by policy) traceroute AS path = actual (by per-hop forwarding decisions)
- expect specified and actual paths to agree, but they differ in practice
- want to know the extent and causes of incongruities

Methodology

- 1. collect data at three sites worldwide
 - BGP table from router near the host performing traceroutes
- 2. convert traceroute IP paths to AS paths
- 3. match up traceroute AS paths with BGP AS paths
- 4. compare pairs of AS paths

Source of traceroute paths

- CAIDA's skitter monitors
 - around two dozen deployed worldwide
 - TTL-based like traceroute but using ICMP ECHO_REQUEST
 - probe predetermined set of addresses ("destination list")
- chose three monitors based on geographical diversity and availability of BGP table nearby

monitor	location	network
sjc	San Jose, CA	MFN/AboveNet
k-peer	Amsterdam	RIPE, near AMS-IX
m-root	Tokyo	WIDE, near NSPIXP

Destination lists used

- IPv4 with 302k dests: sjc
 - broad cross-section of Internet hosts
 - e.g., web servers, backbone routers, business desktops, consumer dial-up/broadband desktops
- DNS with 143k dests: k-peer, m-root
 - clients of DNS root servers
- IPv4 and DNS lists have 24k dests in common

Data collected

- on Apr 1, 2002
- keep only complete traceroute paths—destination and all intermediate hops responded

	sjc	k-peer	m-root
complete paths	220k	90k	89k
% all paths	73%	63%	62%
BGP prefixes	108k	116k	116k

Pairing of AS paths

- pair up traceroute and BGP AS paths based on prefix of traceroute destination
- can have several destinations per prefix ⇒ several traceroute IP paths per prefix
 - reduce to *distinct* traceroute AS paths *per prefix* to avoid overrepresentation of any one prefix
 - * avg. 97% of prefixes have only one distinct traceroute AS path

	sjc	k-peer	m-root
distinct traceroute AS paths	60,271	36,950	38,527
BGP prefixes with paths	58,037	36,170	37,292
% all prefixes	54%	31%	32%

Analysis

Terminology

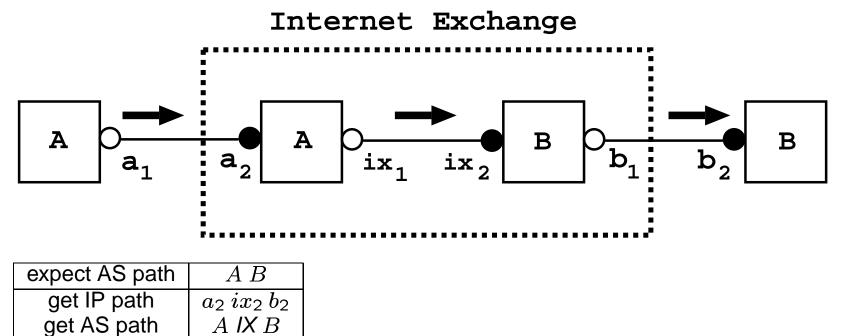
- traceroute path for traceroute AS path
 - no more discussion of *IP* paths
- BGP path for BGP AS path

Incongruent paths

• Def: A traceroute path is **incongruent** to a BGP path if the paths don't have the same sequence of ASes.

	sjc	k-peer	m-root
all distinct paths	60,271	36,950	38,527
incongruent paths	11,297	36,888	38,460
% of all distinct	19%	99.8%	99.8%

Causes of incongruities


- exchange point ASes
- ASes under common ownership
- other causes

Exchange point ASes

• Def: An **exchange point (IX) AS** is an AS number belonging to an IX that is used to announce prefixes assigned to the routers at the IX.

- e.g., 6695 \Rightarrow DE-CIX; 5459 \Rightarrow LINX; 1200 \Rightarrow AMS-IX

• appear in traceroute paths:

Exchange point ASes cont'd

• IX ASes are significant cause of incongruity

cause of incongruity	sj	С	k-p	eer	m-root		
involving IX ASes	4,461	(40%)	36,884	(100%)	31,701	(82%)	
 only IX ASes 	3,749	(33%)	30,163	(82%)	20,601	(54%)	
 IX & non-IX ASes 	712	(6%)	6,721	(18%)	11,100	(29%)	
only non-IX ASes	6,818	(60%)	4	(0%)	6,759	(18%)	
total: incongruent paths	11,279		36,888		38,460		

- most paths of k-peer and m-root cross nearby IX; hence greater impact
 - but see IX ASes in paths regardless of traceroute source location
 - e.g., IXes neer k-peer and m-root have been excluded below:

# IX ASes per path	sjc		k-pe	er	m-root		
1+	5,725	(9%)	1,070	(3%)	4,198	(11%)	
1	5,648	(9%)	1,052	(3%)	4,060	(11%)	
2	77	(0%)	18	(0%)	118	(0%)	
3	0		0		20	(0%)	
total: distinct paths	60,271		36,950		38,527		

ASes under common ownership

- many organizations have several AS numbers
 - after merger or acquisition
 - for convenience implementing routing policy, such as segregating:
 - * academic vs. commercial traffic
 - * transit vs. customer traffic
- some closely related organizations
 - MCI/WorldCom/UUNET/AlterNet/ANS/Bertelsmanns
 - SBC/Pacific Bell/Nevada Bell/Southwestern Bell
 - C&W/Exodus/PSI
 - Qwest/US West/SuperNet/Touch America
- impacts topology analysis
 - e.g., want "peering between organizations", not "peering between AS numbers"
- different concept than "sibling ASes"—organizations under separate ownership that provide mutual transit

Common ownership cont'd

- during comparison, two AS numbers match if
 - 1. numerically equal
 - 2. under common ownership
- incongruities due to common ownership ($B \equiv B'$):

BGP	А	В		С
Traceroute	A	В	Β′	С
BGP	А	В	С	
Traceroute	А	Β′	С	

• breakdown of incongruities by cause:

cause of incongruity	sjc		k-p	eer	m-root		
common ownership & IX ASes	2,711	(24%)	1,464	(4%)	932	(2%)	
only IX ASes	3,749	(33%)	30,163	(82%)	20,601	(54%)	
other causes	4,819	(43%)	5,261	(14%)	16,927	(44%)	
total: incongruent paths	11,279		36,888		38,460		

Analysis of remaining incongruent paths

- compared paths in terms of editing distance
 - minimal amount of change needed to convert BGP path to traceroute path (cf. Unix diff program)
 - insertions, deletions, and substitutions of one or more ASes
- delete 11422, insert 1

BGP	207.99.128.0/17	6461	209	11422	2151		2920
Traceroute	207.99.161.1	6461	209		2151	1	2920

• substitute (3549 701 1) for (209)

BGP216.152.160.0/20646120911081Traceroute216.152.163.24864613549701111081

Analysis cont'd

- examined incongruent paths not caused *entirely* by IX ASes or common ownership
- most traceroute paths longer than corresponding BGP paths

traceroute path	sjc		k-p	eer	m-root		
longer	3,125	(65%)	3,673	(70%)	15,765	(93%)	
equal	474	(10%)	1,533	(29%)	1,126	(7%)	
shorter	1,220	(25%)	103	(2%)	36	(0%)	
total: remaining paths	4,819		5,216		16,927		

• mostly insertions in traceroute paths

operation	sjc		k-p	eer	m-root		
insertions only	2,788	(58%)	2,764	(53%)	13,661	(81%)	
deletions only	1,132	(23%)	1	(0%)	0	(0%)	
substitutions only	813	(17%)	1,813	(34%)	2,648	(16%)	
mixture	86	(2%)	683	(13%)	618	(4%)	
total: remaining paths	4,819		5,216		16,927		

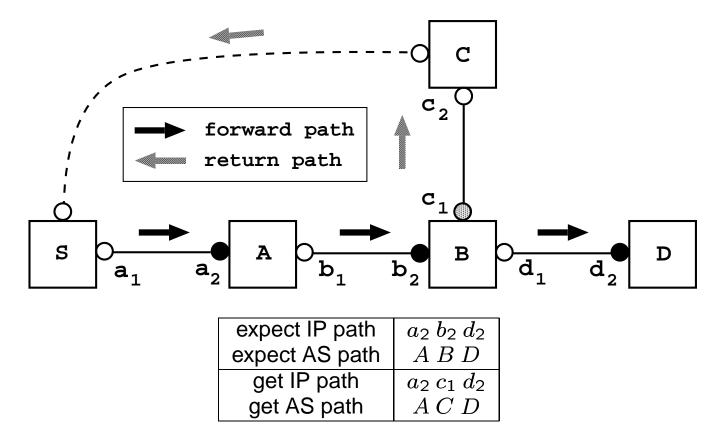
Analysis cont'd

• case: ASes appended only

BGP A B C Traceroute A B C D E

- 1,357 paths in sjc, 0 in k-peer, 2 in m-root
- speculate DNS clients located at provider (not customer) premises
- case: entire path differs, except source and destination

BGP	А	В	С	D
Traceroute	А	Х	Y	D


- 563 paths in sjc, 233 in k-peer, 251 in m-root
- speculate routing change

Suspected causes of remaining incongruities

- 1. inaccurate conversion of traceroute paths to AS paths:
 - fundamentally difficult to identify the AS owning the routers seen in traceroute paths
 - made worse by:
 - IP addresses without matching BGP prefixes
 - IX prefixes announced by IX participants
 - less precise mapping due to BGP prefix aggregation/filtering
- 2. mid-path routing change:
 - single traceroute path reflecting more than one path due to route change or load balancing
- 3. third-party addresses:
 - traceroute path containing hops not in the actual forward path
 - related work (see below) suggests impact is minimal
- 4. use of BGP table snapshot rather than BGP updates:
 - BGP route may have changed during the 7–9 hours needed to perform traceroutes

What are third-party addresses?

- addresses in *return* path, not forward path
 - RFC1812: ICMP response packet should have source address set to *outgoing* interface.
- can cause incorrect AS path:

Conclusions

- **IX ASes** and **common ownership** are significant causes of incongruity
 - treating each AS number separately can
 - 1. miss relationships between organizations
 - 2. lead to incorrect topology models
- analysis of remaining incongruities suggests a diversity of causes
- topologies derived from traceroute and BGP paths differ

Resources

- "Traceroute and BGP AS Path Incongruities", <www.caida.org/outreach/papers/2003/ASP/>
- "On Third-party Addresses in Traceroute Paths", PAM2003, <www.caida.org/outreach/papers/2003/3rdparty/>