caida 2004-2006 view

ucsd/sdsc/caida
kc@caida.org
june 2004
http://www.caida.org/projects/progplan/
caida activities: 2004 update

research programs
- active: macroscopic topology project
- passive: (real-time) traffic workload characterization
- DNS analysis
- routing analysis and modeling
- performance/bandwidth estimation methods and tools
- Internet Measurement Data Catalogue (IMDC)
- security issues

other areas
- tools development
- new network visualization metaphors
- policy
- outreach & education
macroscopic topology project

2003 activities
- **massive macroscopic traceroute data** - most comprehensive in world
 - established legitimate framework for IP topology analysis
- **mapping IP -> AS -> organization -> latitude, longitude**
 - largest publically available database (still hard problem - needs funding)
- **distilled AS topology data available to community**
 - derived from skitter probes and BGP data
 - weekly
 - Internet topology data kit (ITDK) 2003
 - april 2003 data: topology, routing, meta-data
 - hopefully wide use of this carefully selected data set
- **AS ranking (in/out degree)**

2004-5
- extending ASrank to organizational granularity
- correlation with routing tables
- IPv6 topology map (scamper data, WIDE funding)
- pop-level map of the Internet (need funding)
macroscopic topology project
traffic workload characterization

2003-5

- continued passive measurements of Internet data
- techniques for high speed traffic sampling/aggregation
- only OC48 backbone traces available to researchers (so far as we know)
- also only network telescope available to researchers (so far as we know)
 - backscatter, worms, scanning traffic
 - invaluable source of data to security researchers
- various levels of anonymization available to community
 - under AUP

- study how user activities produce torrents of bytes
 - testing models for TCP in presence of bursty cross traffic
 - detection of long-running streams
 - tracking Internet usage patterns, e.g., p2p
 - PAM 2004 paper: ‘their share: diversity and disparity in IP traffic’
 - PAM 2004 paper: ‘measurements & lab simulations of upper dns hierarchy’

2004-5

- co-chairing IETF WG developing standards for flow measurements
- traffic spectroscopy (andre broido)
- 2005 goal: 24 hour packet trace from the core
Domain Name System (DNS) data analysis

DNS = indispensable Internet component

- new technologies (e.g., anycast, DNSSEC) being deployed at highest (point of failure) levels without instrumentation to debug

2003
- real-time public monitor of root/gTLD performance
- studies of garbage at root servers
- modeling of DNS resolver behavior
 - trace-based simulation

2004-2005
- analysis of F-root (ISC) data for caching resolver pollution
 - submitted paper to Sigcomm workshop (Duane will discuss today)
- support ICANN’s Security and Stability Committee (SSAC) with data
 - empirical analysis to support policy recommendations
- proposed CAIDA/OARC project to NSF
 - getting sound DNS data to researchers
 - preliminary OARC support (w WIDE help)
new routing researcher: Dima Krioukov

- theoretical background in routing
- IRTF chair of working group on scalable interdomain routing
- will talk tomorrow on compact routing
 - infocom 2004 paper
- submitted proposal to NSF for follow-up funding
 - explore applicability of surprising theoretical results from 2003

2003
- completed atoms project. no follow-up for now
- atoms PI patrick verkaik will be joining UCSD PhD program in the fall

2004-5
- supporting data for pop-level map
- compact routing research for inter-domain
- macroscopic AS topology available weekly
bandwidth estimation

- collaboration with GA tech - they creating new bwest tools
 - pathrate: packet pair technique: dispersion of two back-to-back packets
 - pathload: SLOPS methodology: looks at one-way delays of a periodic packet stream
 - non-intrusive but requires cooperation of both endpoints
- tools methodology, evaluation
- comparing and calibrating available tools
 - pathload, pathrate, pathchirp, ABw, igi, netest2, iperf
- experiments in CalNGI reference lab
 - full control of environment & conditions
 - 100 Mbp and GigE links
- next stage: experiments against real traffic

2004-5 (ga tech lead, pending funding)

- convenient user interface to these tools
- integration with other network middleware
performance data

skitter and scamper delay data
- intermediate RTTs now being collected
- brad and matthew to analyze this year

beluga per hop latency tool
- unfunded

2003
- AS rank
- skitter daily summary

2004
- AS rank by organization
- IPv6 topology map over time
- improve operational integrity of measurement and analysis software
I’net Measurement Data Catalog (IMDC)

‘trends’ project

- year 2 of three-year project funded (partially) by NSF
 "Correlating Heterogeneous Measurement Data to Achieve System-Level Analysis of Internet Traffic Trends"

- design a universal annotation system (meta-data)
 - how to describe heterogeneous Internet data sets?
- build meta-data repository to store "data about data"
- do cross-correlational analysis
- start building ‘community memory’
 - recommendations for long-term archiving of measurement data
- collaboration with IMRG (Internet measurement research group)

It is time for a substantial increase in attention toward the task of conducting Globally Relevant Measurements of Internet phenomena and trends
challenge: characterize Internet traffic trends

motivation: lack of data since 1995
another motivation: way too much data

- admissions about dealing with Internet data
 - vern’s 2001 talk www.icir.org/vern/talks/vp-nrdm01.ps.gz
- longitudinal data are highly ad hoc
- measurement tools lie to us
 - packet filters, clocks, "simple" tools...
 - no culture of calibration
- measurements carry no indication of quality
 - lack of auxiliary information
- measurements are not representative
 - there is no such thing as typical
- analysis results are not reproducible
- large-scale measurements are required
 - that overwhelm our home-brew data management
- we do not know how to measure real traffic
just so i don’t understate the case

- for the most part we really have no idea what’s on the network
- can’t measure topology effectively in either direction, at any layer.
- can’t track propagation of a bgp update across the Internet
- can’t get router to give you its whole RIB, just FIB (best routes)
- can’t get precise one-way delay from two places on the Internet
- can’t get an hour of packets from the core
- can’t get accurate flow counts from the core
- can’t get anything from the core with real addresses in it
- can’t get topology of core
- can’t get accurate bandwidth or capacity info
 - not even along a path much less per link
- SNMP just an albatross (enough to inspire telco envy)
- no ’why’ tool: what’s causing my current problem?
- privacy/legal issues disincent research
- result --> meager shadow of careening ecosystem
- result --> discouraged (or worse) academics

if you’re not scared i’m not explaining this right
obstacles to Internet/network research

where is the data?

- Internet grew organically, incorporating useful technologies as less useful ones obsolesced
- scientifically rigorous monitoring & instrumentation not included in post-NSFNET Internet
- data often proprietary; research use outside owning administrative domain is rare
- researchers can’t find out about what little data is available
- Internet research fundamentally different from physics/biology/chemistry -- although we have their problems as well
 - why wouldn’t we? -- it’s a dynamic, organic system, composed of interactions we don’t understand, among particles we can’t access individually
- more like astronomy w/no national virtual observatory or even decent telescopes
- or early quantum mechanics
 - in that you can’t measure the particles when you need to
- add a bunch of lawyers -> recipe for bleak future

requires sophisticated tools And special access to data
obstacles to Internet/network research

problems caused by lack of data

- results with predictive power elusive since every link/node has its own idiosyncrasies/policies
- makes it hard to assess the quality of any result
- fundamental research cannot be accomplished
- tools designed to combat major problems cannot be tested
 - DoS attack mitigation
 - virus/worm spread
- can’t validate theory, model, or simulation against real network
 - not to mention code bugs, methodology flaws

result: weak Internet science

- it’s not just soft, it’s slippery
- and stunted
- no revolutionary progress in the field for years
- and most of us are partial to revolution
 - so if we’re sometimes cranky, that might be why
the view from here

the data we do have

- disparate
- incoherent
- limited in scope
- scattered
- unindexed

what we need

- **globally relevant measurements**
 - rational architectures for data collection
 - instrumentation suitable for above OC48 links (that number tends to grow..)
 - archiving and disseminating capabilities
 - data mining and visualization tools for use in (nearly) real time?
 - historic data for baseline
 - cross-domain analysis of multiple independent data sets
 - local phenomena vs. global behavior
what can be done

find way to fund researchers to share data

- time and resources are required to share public data with other researchers
- make a data catalog of available data sources -- a single clearinghouse for information on available data sets

need ‘well-curated’ Internet measurement data repository

- measurements need pedigrees describing them, how to navigate
- audit trails, portable analysis scripting language to support reproducibility
- well-managed meta-data (machine readable and searchable)
- software tools to analyze
- understand sampling implications and technology better
- anonymization tools & reduction agents
- long-term and sustained support of such repositories

btw, much here already been/being solved by google, amazon, orkut

- tech transfer might should go both ways
IMDC project: tasks

- deploy strategic Internet measurement instrumentation

- improve measurement tools
 - advanced hardware for monitoring OC48 links
 - advanced software for pre-processing the data various levels of aggregation
 - modules for storage and manipulation of data
 - expand security related monitoring
 - ability to capture DoS attacks in progress

- develop and support a large data storage infrastructure at SDSC

- coordinate movement of traffic measurement data

- create multi-faceted sets of data (datakits)

- universal annotation system (next slide)
IMDC project: universal annotation system

requirements

- accommodate heterogeneous raw data sets
- handle data sets distributed among many sites
- facilitate community access to data repositories
 - data sharing and comparative analysis
- flexible and extensible
 - define meaningful data cross-mappings
- community-based approach to develop common formats
- encourage wide use of common formats
- leave control and security issues to data owners
- ? what else ?

present state of knowledge

- none for the Internet community
- draw from other sciences
 - biology, physics, astronomy
IMDC project: universal annotation system (2)

tasks

- create front-end user interface
 - Internet access to data
 - APIs
 - AUPs
 - compatibility with collection-based software

- create back end information management system
 - automatic methods of indexing
 - include: data, tools, analysis requests
 - distributed data collection and publication

- maintain and develop compelling tools
 - responsive to user needs

- solicit input from concerned research and standards groups
 - Grid Forum, IETF (IPFIX, IPPM, PSAMP), IRTF (IMRG)
 - NANOG, ISP community (security issues)
expected users of IMDC

- CAIDA currently receives dozens of queries for data every week
- CAIDA makes available hundreds of gigabytes of data, including:
 - anonymized and unanonymized OC48 backbone traces
 - network telescope data including:
 - host scan dynamics
 - the spread of Internet worms
 - Denial-of-Service backscatter
- making CAIDA data searchable via IMDC will encourage people to use

we’ve attempted a compromise between requiring so much context for contributed data that no one will contribute, and requiring so little background that searches don’t provide meaningful information
example: workload trends

- patterns of usage over time
- pace of new protocols’ deployment
- growth of tunneling technologies
 - impact on fragmentation
- more users or more traffic per user?
 - per host, prefix, site, AS
- behavioral characteristics
 - for classification
 - for engineering purposes
- comparison of various flow models
- traffic load and geography
 - local
 - regional
 - international
- tracking distributed denial-of-service activity
expected uses of IMDC

exploding myths

- e.g., RIAA claimed in August "P2P traffic dropped"
 - March/May 2003 -> December 2003 brought 29% -> 14% "usage"
 - Data sources: telephone surveys Nov18->Dec14 (huh?); software downloads
 - Not data sources: Internet data (wth?)

real data

- Have never seen a trace at time t with less p2p traffic than at time t-1
 - Frankly I don’t see that happening soon

being able to verify/refute this claim is actually a huge deal

- (and not just about changing how we must think of ownership of everything that comes out of our brains)
- Will change Internet engineering as we know it today
- Current stability and profitability/usability assumptions of asymmetric utilization

- (btw also driving community to re-evaluate issues of privacy and anonymity;
- won’t ever see a p2p protocol again that doesn’t support encryption)
IMDC project: meta-commentary

end game: legitimate tracking of trends

- caveat: trends really not good
- the more we see, the less we like
- kc’s 2004 talk ‘top problems of the Internet & how researchers can help’
- grep for ‘garbage’ in bruce sterlings’s nsf april 2004 grand challenge workshop keynote talk
 - http://www.cra.org/Activities/grand.challenges/sterling.html
- "digital imprimateur" -- john walker
 - "how big brother and big media can put the Internet genie back in the bottle"
 - rich ‘optimistic pessimism’
- geoff huston’s nznog talk
 - video http://s2.r2.co.nz/20040129/
 - not so much with the optimism

this project’s website (neutral about falling sky)

- http://www.caida.org/project/trends/
IMDC: interim progress (20/36 months in)

- **short answer: not done yet**
 - design process complete, including user interface
 - database configured and functional
 - prototype implementation in progress

- **medium answer: impediments on our minds**
 - ineffective data cataloging
 - disparate formats
 - inadequate documentation
 - inadequate or missing information or quality control
 - inadequate analysis tools
 - inadequate local storage for data analysis

- **long answer: workshop in early June 2004**
 - co-chair with IRTF’s IMRG chair to maximize community input
 - introduce community to and solicit feedback on architecture and user interface
 - get architecture to fit data, not vice-versa
 - discuss typical user modes for researchers, engineers
 - discuss logistical issues
 - supporting processing tools
 - anonymization techniques
 - security of database
 - future workshop ‘reverse engineering the Internet’ theme (Neil Spring’s paper)
 - relationship to and support for distributed observatory
CAIDA: security research

global denial of service activity

- CAIDA invented backscatter methodology
 - detecting denial-of-service (DOS) activity on the global Internet
 - monitoring spread of worms in the networks
 - Nimda, Code Red, Sapphire, ... (to be continued)
- the only publicly available data quantifying DOS

main results

- understand nature of current DOS threat
- longer-term analysis of recurring patterns of attacks
 - number, duration, focus, behavior
- modeling quarantine systems to block self-propagating code
 - use real data from epidemics & macroscopic topology probing
 - explore systems in terms of abstract properties
 - speed of detection, granularity of blocking, breadth of deployment

 disturbing discovery: no way to react in time!
 automated detection of worms and response are essential
network telescope observation station

network telescope

- a chunk of globally routed IP address space
 - e.g., UCSD’s has a /8 and /16 network
 - (1/256th plus 1/65539th of all IP version 4 addresses)
- little or no legitimate traffic (or easily filtered legitimate traffic)
- unexpected traffic arriving at the network telescope can imply remote network/security events
- generally good for seeing explosions, not small events
- depends on random component in spread
- has given vital data on: codered*, sapphire, SCO attacks, witty worm

UCSD’s network telescope team:

David Moore & Colleen Shannon
security: Internet worm attacks (3)

sapphire effects

- over 75,000 hosts infected in ten *minutes*
- sent more than 55 million probes per second worldwide
- collateral damage:
 - bank of america ATMS
 - 911 disruptions
 - continental airlines cancelled flights
- unstoppable; relatively benign to hosts
telescope: worm attacks

open research questions
- random number generation and spread rates
- effective countermeasures
- victim classification/hitlists
telescope observation station goals

- **continuous data collection with rotating data files:**
 - full packet trace kept for 24 hours
 - complete packet header trace kept for 1 week
 - aggregated data (flow tables) stored indefinitely

- **sanitized data publicly available to research community**
 - under NDA
 - intend to integrate with doug’s data collection efforts

- **expansion to include monitoring distributed address space**
 - countermeasures include to #define telescope prefixes out of scripts
 - countercountermeasures include distributed lenses and moving lenses (requires ARIN support)
publicly accessible realtime graphical monitor
- denial-of-service attacks
- worm activity
- port scanning

authorized users
- drilldown technology
 - timescale
 - transport protocol
 - application ports
 - subnets

ability to save (manually or automatically) data of interest

email alerts for trigger events
NTOS graphical interface

ICMP host scanning

- 5 October 2003
- Some attacks are apparent, but others are difficult to identify
NTOS graphical interface

ICMP host scanning

- 5 October 2003
- Viewing attacks by source country helps to differentiate them
NTOS graphical interface

ongoing denial of service attacks

- 7 October 2003
- breakdown of attacked services
ongoing denial of service attacks

- 7 October 2003
- breakdown by victim location
Network Telescope Observation Station will continuously monitor worm and denial-of-service activity worldwide, archiving data for in-depth analysis.

NTOS furthers CAIDA’s mission to foster communication and cooperation via collection, dissemination, and visualization of Internet data.
tools

- Internet measurement tool taxonomy: www.caida.org/tools/taxonomy/
 - used extensively by research and operational community

- CAIDA-developed tools:
 - workload: CoralReef, NeTraMet cflowd
 - topology: skitter, iffinder, gtrace
 - performance: beluga
 - IP data management utilities: arts++, netgeo
 - viz: chart:graph, walrus, rrdtool, geoplot, mapnet, otter, libsea, plot-latlong
 - dns: dnsstat, dnstop
 - mbone: mantra
caida outreach

- conference and journal publications
 - http://www.caida.org/outreach/papers/
- national and international presentations
 - http://www.caida.org/outreach/presentations/
- provide data to researchers
 - http://www.caida.org/outreach/data/
- ISMA workshops
 - http://www.caida.org/outreach/isma/
- security analysis
 - http://www.caida.org/dynamic/analysis/security/
- Internet course curriculum materials
 - http://iec.caida.org
- Internet tools taxonomy
 - http://www.caida.org/tools/taxonomy/
- Internet Atlas gallery
- Internet measurement infrastructures
 - http://www.caida.org/analysis/performance/measinfra/
- networking research/analysis at UCSD
 - http://www.caida.org/home/about/research/
conclusions

current caida projects (apr 2004)

- [UCSD-RAMP] DARPA RAMP (UCSD CSE collaboration)
- [DOE-SciDAC] Bandwidth Estimation (bwest) [ends in 2004]
- [NSF-Trends] Correlating heterogeneous measurement data to achieve system-level analysis of Internet traffic trends
- [NSF-NCS] Inference of Internet structure (routing/topology)
- [Mbrs] Outreach to commercial ISPs and vendors
- [Cisco URB] Routing and Topology Analysis (AS ranking)
- [Cisco URB] Security: DOS attack and countermeasure analysis
- [DNS-WIDE] analysis of DNS root and gTLD nameserver system
Measurement is the link between mathematics and science.
-Brian Ellis, 1968