Security Data Collection at CAIDA

Colleen Shannon (CAIDA)
David Moore (CAIDA/UCSD-CSE)

cshannon @ caida.org
dmoore @ caida.org

www.caida.org
Outline

• Data Collection at CAIDA

• CAIDA Security Research:
 – What is a Network Telescope?
 – Denial-of-Service Attacks
 • SCO DoS Attack
 – Internet Worms
 • Code-Red
 • SQL Slammer
Current Project Areas

- Routing topology and behavior
- Passive monitoring and workload characterization
- Internet Measurement Data Catalog
- Bandwidth estimation
- Flow collection and efficient aggregation
- Security: DoS and Internet worms
- DNS performance and anomalies
- Visualization
Current Project Areas

• Routing topology and behavior
 – Skitter, scamper; monitors around the world

• Internet Measurement Data Catalog

• Trace Collection and Storage
 – Maintaining remote monitors
 – Transferring files back to SDSC
 – Sanitizing data
 – Managing data access

• Security: DoS and Internet worms
Network Telescope

- Chunk of (globally) routed IP address space
 - 16 million IP addresses
- Little or no legitimate traffic (or easily filtered)
- Unexpected traffic arriving at the network telescope can imply remote network/security events
- Generally good for seeing explosions, not small events
- Depends on random component in spread
Network Telescope: Denial-of-Service Attacks

- Attacker floods the victim with requests using random spoofed source IP addresses
- Victim believes requests are legitimate and responds to each spoofed address
- We observe 1/256\(^{th}\) of all victim responses to spoofed addresses [MSV01]
Denial-of-Service Attacks
DoS Attacks over time
SCO Denial-of-Service Attack

• Who is SCO?
 – UNIX (Linux) software company
 – Originally Santa Cruz Operations
 – Caldera bought Unix Server Division from Santa Cruz Operations in August of 2000
 – Caldera changed its name to "The SCO Group" in August 2002
 – Sued IBM in March 2003 claiming that IBM misappropriated its UNIX operating system intellectual property (acquired from Novell)
 – Threatened lawsuits against many others
SCO Denial-of-Service Attack Timeline

- May 2003: SCO gets hit by its first major DoS Attack
- August 2003: SCO gets hit by its second major DoS Attack
 - random rumors that an internal network problem was publicized as a DoS attack
- December 10, 2003 3:20 AM: an ~340,000 MB/s SYN flood incapacitates SCO's web servers
- December 10, 2003 1:37 PM: groklaw.net blog "reports" on rumors that SCO is not being attacked; they are faking the whole thing to implicate the open source community
- December 11, 2003 2:50 AM: the SYN flood is expanded to target SCO's ftp server in addition to their webservers
- December 11, 3003 noon: SCO takes themselves off the 'net while pursuing upstream filters to block the attack
SCO Denial-of-Service Attack

http://www.caida.org/analysis/security/sco-dos/

(C) Copyright 2003 UC Regents
Now it gets interesting…

- Rabid open source folks attack CAIDA -- did you know:
 - all of our work is funded by SCO
 - CAIDA isn't actually a research organization at all; it didn't exist before December 10th
- CAIDA webserver gets a DoS attack of its own
 - 11pm-1am PST
 - Some attack characteristics point to the same perpetrator (or simply same attack tool) but no conclusive evidence
SCO DoS Attack "Results"

- Security experts (us included) need to be careful what they say in the absence of details
 - Sure, technology exists to thwart SYN floods, but not at 340 MB/s inbound coming to a DS3
- It's no fun to be a SCO network admin
 - your own ISP won't admit they give you connectivity, let alone corroborate the attack reports
 - your CEO is quoting the aforementioned security experts who say any 5 year old could stop the attack
 - your only hope is upstream ISPs helping you, but your company is not popular with NOC employees
- Why did folks believe SCO was faking the attack?
What is a Network Worm?

• Self-propagating self-replicating network program
 – Exploits some vulnerability to infect remote machines
 • No human intervention necessary
 – Infected machines continue propagating infection
Network Telescope: Worm Attacks

- Infected host scans for other vulnerable hosts by randomly generating IP addresses
- We monitor 1/256th of all IPv4 addresses
- We see 1/256th of all worm traffic of worms with no bias and no bugs
Internet Worm Attacks: Code-Red
(July 19, 2001)

Map Source: www.caida.org

Thu Jul 19 00:00:00 2001 (UTC)
Victims: 159

http://www.caida.org/
Internet Worm Attacks: Code-Red
(July 19, 2001)

- 360,000 hosts infected in ten hours
- No effective patching response
- More than $1.2 billion in economic damage in the first ten days
- Collateral damage: printers, routers, network traffic
Response to August 1st CodeRed

- CodeRed was programmed to deactivate on July 20th and begin spreading again on August 1st.
- By July 30th and 31st, more news coverage than you can shake a stick at:
 - FBI/NIPC press release
 - Local ABC, CBS, NBC, FOX, WB, UPN coverage in many areas
 - National coverage on ABC, CBS, NBC, CNN
 - Printed/online news had been covering it since the 19th
- “Everyone” knew it was coming back on the 1st

- Best case for human response: known exploit with a viable patch and a known start date
Patching Survey

- How well did we respond to a best case scenario?

- Idea: randomly test subset of previously infected IP addresses to see if they have been patched or are still vulnerable

- 360,000 IP addresses in pool from initial July 19th infection

- 10,000 chosen randomly each day and surveyed between 9am and 5pm PDT
Patching Rate
Dynamic IP Addresses

• How can we tell how when an IP address represents an infected computer?

• Resurgence of CodeRed: Max of ~180,000 unique IPs seen in any 2 hour period, but more than 2 million across ~a week.

• This DHCP effect can produce skewed statistics for certain measures, especially over long time periods
DHCP Effect seen in /24s
Summary of Recent Events

• **CodeRed** worm released in Summer 2001
 - Exploited buffer overflow in IIS
 - Uniform random target selection (after fixed bug in CRv1)
 - Infects 360,000 hosts in 10 hours (CRv2)
 - Still going…

• **Starts renaissance** in worm development
 - CodeRed II
 - Nimda
 - Scalper, Slapper, Cheese, etc.

• **Sapphire/Slammer** worm (Winter 2003)
• **Witty** worm (March 19, 2004)
Inside the Sapphire/Slammer Worm

- Exploited bug in MSSQL 2000 and MSDE 2000
- Worm fit in a single UDP packet (404 bytes)

- Simple code structure
 - Cleanup from buffer overflow
 - Get API pointers
 - Create socket & packet
 - Seed RNG with `getTickCount()`
 - While (TRUE)
 - Increment RNG (mildly buggy)
 - Send packet to RNG address

- Key insight: non-blocking & stateless scanning (adaptable to TCP-based worms)

<table>
<thead>
<tr>
<th>Header</th>
<th>Oflow</th>
<th>API</th>
<th>Socket</th>
<th>Seed</th>
<th>RNG</th>
<th>Sendto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Code borrowed from published exploit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sapphire growth

- First ~1min behaves like classic random scanning worm
 - Doubling time of ~8.5 seconds
 - Code Red doubled every 40mins
- >1min worm starts to saturate access bandwidth
 - Some hosts issue >20,000 scans/sec
 - Self-interfering
- Peaks at ~3min
 - 55million IP scans/sec
- 90% of Internet scanned in <10mins
 - Infected ~100k hosts
 (conservative due to PRNG errors)
Sapphire Animation
Internet Worm Attacks: Sapphire
(aka SQL Slammer) – Jan 24, 2003

Before 9:30PM (PST) After 9:40PM (PST)

• ~100,000 hosts infected in ten minutes
• Sent more than 55 million probes per second world wide
• Collateral damage: Bank of America ATMs, 911 disruptions, Continental Airlines cancelled flights
• Unstoppable; relatively benign to hosts
Spread of the Witty Worm
March 19, 2004

- First wide-spread Internet worm with destructive payload
 writes 64k blocks to disk at random location, repeatedly

- Launched from a large set of ground-zero hosts
 >100 hosts

- Shortest interval from vulnerability disclosure to worm release
 1 day

- Witty infected firewall/security software
 i.e. proactive user base

- Spread quickly even with a small population
 ~12,000 total hosts, 45 minutes to peak of infection
Early Growth of Witty

![Graph showing the early growth of Witty with a cumulative line and a note indicating 110 hosts in the first 10 seconds (not natural worm growth).]
Geographic Spread of Witty
The Sky is Falling…

- Worms are the worst Internet threat today
 - Many *millions* of susceptible hosts
 - Easy to write worms
 - Worm payload separate from vulnerability exploit
 - Significant code reuse in practice
 - Possible to cause major damage
 - Wipe disk; flash bios; modify data; reveal data; Internet DoS

- We have no operational defense
 - Good evidence that humans don’t react fast enough
 - Defensive technology is nascent at best
What can we do?

- Measurement
 - What are worms doing?
 - What types of hosts are infected?
 - Are new defense mechanisms working?

- Develop operational defense
 - Can we build an automated system to stop worms?
Open Research Questions for Measurement

• Denial-of-Service Attacks:
 – how much actual damage to victim
 – overall trends

• Internet Worms:
 – victim classification
 – early detection, automated filters

• Telescope Design:
 – distributed telescopes
 – making monitors which are robust under attack situations (millions of flows per second)
Acknowledgements

• Collaborators:
 – UCSD-CSE: Geoff Voelker, Stefan Savage, Jeffrey Brown
 – ICSI/LBNL: Vern Paxson
 – Silicon Defense: Stuart Staniford, Nicholas Weaver
 – UCB-EECS: Nicholas Weaver

• Data Providers:
 – UCSD: Brian Kantor, Pat Wilson
 – UCB/LBNL: Vern Paxson
 – UWISC: Dave Plonka
 – Dshield: Johannes Ullrich
 – Compaq/WRL: Jeff Mogul
 – DOD CERT: Donald LaDieu, Matthew Swaar

• Funding:
 – Cisco University Research Program (URP)
 – DARPA
 – NSF
 – CAIDA Members
Related Papers

• Inferring Internet Denial-of-Service Activity [MSV01]
 – David Moore, Stefan Savage, Geoff Voelker

• Code-Red: A Case Study on the spread and victims of an Internet Worm [MSB02]
 – David Moore, Colleen Shannon, Jeffrey Brown

• Internet Quarantine: Requirements for Containing Self-Propagating Code [MSVS03]
 – David Moore, Colleen Shannon, Geoff Voelker, Stefan Savage

• The Spread of the Sapphire/Slammer Worm [MPS03]
 – David Moore, Vern Paxson, Stefan Savage, Colleen Shannon, Stuart Staniford, Nicholas Weaver
Additional Information

- Code-Red v1, Code-Red v2, CodeRedII, Nimda

- Code-Red v2 In-depth analysis

- Spread of the Sapphire/SQL Slammer Worm

- Network telescopes