
UCSD CSE

Ken Keys, David Moore, Cristian Estan

CAIDA
University of California, San Diego
University of Wisconsin-Madison

SIGMETRICS – June 8, 2005

A Robust System for 
Accurate Real-time 

Summaries of Internet Traffic



2

Big Picture

• Operators and researchers want to understand the 
traffic on Internet links.

• Generic measurement system goals:
– Produce answers which match user questions

– Be accurate in measurements

– Scale to high network speeds (OC-768, 10GigE, …)

– Be robust for all traffic mixes (DDoS, worm, flash crowd, …)
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Typical Operational Measurement
Questions

• What is the application breakdown in packets & bytes?

• How much traffic came from or went to a particular subnet?

• What are the best ISPs to peer with to decrease my costs 
based on the actual traffic of my customers?

• Where is the best place to deploy a new web cache?

• Which of my web servers has the most unique clients?

• Which of my hosts seem to be spam servers?
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Flow Measurement

• How do we answer these questions?

• Current operational traffic measurement:
– Typically collected on routers
– Packet sampling employed on high-speed links
– Flow-based

• For each tuple of: protocol, source & destination IP addresses and ports

• Count: # packets, # bytes

• Generally, people aggregate flows to make summaries 
keyed by specific fields (e.g. just source IP address)
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Flow aggregation (by source ip)
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Large-Scale Malicious Traffic

• Denial-of-service attacks, worm spread and port 
scanning can overwhelm flow measurement 
systems

• Fields in the flow key take on a much larger range 
than in normal traffic:
– Spoofed source DoS = random source IP address
– Typical Internet worm = random destination IP address
– Port scanning = walk of large # of ports and addresses

• In these situations every single packet may result 
in a separate flow
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Outline

• Background

• Traffic Summaries
• System Overview and Algorithms:

– Count flows

– Identify important entries

– Adapt sampling rates

• Conclusions
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Traffic Summaries

• Most users have a well-defined set of reports and 
aggregations they normally want.

• Can we do better than Adaptive NetFlow with the Flow 
Counting Extension (or similar flow-based reporting) when 
the user specifies the desired aggregations in advance?

• Yes!
– Smaller, more specific reports.

– More precise estimates, including tight lower-bounds.

– Isolation of damage from DoS, worms and scanning.
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Traffic Summaries

• Provided reports are of “hogs” (or “heavy-hitters”)
– All aggregates contributing significant numbers of 

packets, bytes or flows are reported

• Operator configures desired aggregations

• For example:
– Source IP addresses – top sources by pkts, bytes or flows

– Protocol/Ports – for determining top applications
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Traffic Summaries – “Hog” Reports

Key type:
• source IP address

• destination IP address

• src. Port and Protocol

• dst. Port and Protocol

• AS matrix

• dst. network prefix

• …

Counter type:
• Packet hogs

• Byte hogs

• Flow hogs

• Out-degree hogs

• In-degree hogs

• …

X
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Robustness & Isolation

• Robustness – system should degrade gracefully in 
the face of unexpected load, continuing to provide 
accurate answers with bounded error.

• Isolation – results of each separate summary 
should be similar to what it would be if that 
summary was the only one being computed.
– i.e. traffic mixes which cause one table to rapidly fill should not 

interfere with the accuracy of the other tables



12

Outline

• Background

• Traffic Summaries

• System Overview and Algorithms:
– Count flows

– Identify important entries

– Adapt sampling rates

• Conclusions
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Why is this hard?

• The most straightforward way of generating a hog 
report would be to keep a table indexed by the 
each key in the traffic with a simple counter for the 
measured value.
– Tables can easily get very large, holding entries which will never be 

part of the final hog report.

– Counting flows (or in-/out- degree) can not be done with simple 
counters alone, since more state is required to track the unique
members of a set. 
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Selected

System Overview

Does packet 
have entry?

Identify Important 
Entries

Create 
entry

Increment 
Counters

Adapt 
Sampling Rate

Yes

No

• Basic logical control flow is replicated for each desired summary table.

• The actual design shares computation and information to improve both 
system efficiency and the accuracy of counters.
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Algorithms – Flow Counting

• Generic goal: given a stream of items, count the number of 
unique items.

• Our goal: given a stream of packets belonging to specific 
flows, count the number of unique flows.

• Caveat: we need to do this operation for many entries 
(100,000s) in parallel
– e.g. for each different source IP address that will be reported, we 

must track how many flows had that address
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Algorithms – Flow Counting

• Three general approaches:
– Keep a table of all flows and aggregate by key-type when needed

• Exact answers, but infeasible for most real-time applications

• Generally used in existing deployments

– Individual flow counting data structure per key-type table entry

– Global data structure and simple counter per key-type table entry
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Per Entry Flow Counting Algorithms

• Multiresolution bitmaps (MRB)
– Memory requirements are logarithmic in maximum number of flows

– A couple kilobytes is sufficient to give 3% average error for 
hundreds of millions of flows

• Triggered bitmaps (TRB)
– Most entries will have a small number of flows

• Start with a small direct bitmap.

• When it fills, dynamically switch to a MRB.

– Saves memory in the typical case but the accuracy is less than 
using MRB from the beginning
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Per Entry Flow Counting Algorithms

• List-triggered bitmaps (LTRB)
– Again, most entries will have a small number of flows

• For each entry, maintain a small list (2 – 4) of the actual flow ids seen

• When the list fills, switch to MRB.  Populate the MRB with the exact set 
of seen flow ids.

– Accuracy is the same as MRB, while achieving space savings 
similar to TRB.
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Global Flow Counting Algorithms

• Tuple set membership:
– Maintain a set of all flows previously counted.

– On all packets, check its flow in the set:
• If present, the flow has already been counted

• If not present, the flow is new, update the counts for all table entries 
involving this packet

– Provides exact counts, but memory usage explodes

• Bloom filter tuple set:
– Use a bloom filter to approximate set membership with fixed false-

positive rates

– Significantly smaller memory requirements
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Global Flow Counting Algorithms

• Bloom filter:
– False-positives can lead to under-estimation of flow counts

• Every reported count is a lower-bound

– Some false-positives can be detected by combining information 
from multiple summary tables

• e.g., if the bloom filter says that we have already seen the flow 
associated with a packet, but there is no entry in the destination IP 
address table when there should be, then we know this is a new flow
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Experimental Setup
(For all data in this presentation)

• Packet traces allow testing with different algorithms and seeds

• OC-48 trace (5 minute portion):
– 22.5M packets (75 kpps), 12.8GB (342 Mbps), 1.21M flows

• Simulated DDoS:
– Fixed destination IP address and port, 44 byte TCP SYN packets

– Random source IP addresses and source ports

– 10M packets (33 kpps), 400MB (12 Mbps), 10M flows

• Additional datasets used in paper

• Same software runs in real-time on monitor boxes
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Picking a Counting Algorithm

• MRB (multiresolution bitmap) memory usage is 1062 MB.

• TRB (triggered bitmap), LTRB (list-triggered bitmap), Bloom (bloom filter)
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Selected

System Overview

Does packet 
have entry?

Identify Important 
Entries

Create 
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Increment 
Counters

Adapt 
Sampling Rate
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Algorithms – Identifying Important Entries

• Packet sample and hold (PSH) ensures there are table entries for
anything with a large number of packets
– For each packet, if there is already an entry in the table, increment the 

packet count

– If there is not an entry, probabilistically sample this packet and create an 
entry in the table when sampled

• Flow sample and hold (FSH) ensures there are table entries for 
anything which will have a large number of flows
– For each packet, if there is already an entry in the table, update the 

associated flow count using previous techniques

– If there is not an entry, sample this flow by checking if
Hash(flowID) < f (sampling fraction) and create an entry in the table
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Why both PSH & FSH (& DSH…)?

• Full tuple set table, so all error due to sampling
• PSH can use lower sampling rates and keep packet count errors low
• FSH can use lower sampling rates and keep flow count errors low
• Use both to keep total sampling low with low error
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Selected

System Overview

Does packet 
have entry?

Identify Important 
Entries

Create 
entry

Increment 
Counters

Adapt 
Sampling Rate
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No
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Algorithms – Adapting Sampling Rate

• Observe which tables and samplers (PSH, FSH) 
are contributing to memory consumption and 
dynamically adjust the sampling rates for each.

• Details in paper/technical report.
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Adaptivity – Robustness/Isolation during 
DDoS Attack

• Recall DDoS attack is spoofing source addresses and not 
the destination addresses.

• We expect such an attack to over-fill the source IP address 
table, reducing accuracy.

• However we wish to ensure that other tables are not 
adversely affected. 
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Adaptivity – Robustness/Isolation during 
DDoS Attack
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Conclusions

• Producing traffic summaries, rather than collecting all flows 
and forcing the user to aggregate:
– significantly decreases memory usage and reporting bandwidth
– significantly increases accuracy of results

• Novel algorithms:
– Flow sample and hold (FSH) allows online streaming identification 

of “flow hogs”
– Bloom filter tuple set counting and list-triggered bitmaps (LTRB) 

efficiently solve “flow counting” for 100,000s of counters

• Adaptive controls:
– provide robustness against malicious/unexpected traffic
– allow isolation between independent reports
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Questions?
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Extended Technical Report

• http://www.caida.org/outreach/papers/
2005/tr-2005-01/
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Traffic Summaries –
Global Traffic Counters

• # of packets

• # of bytes

• # of active flows (5-tuples)

• # of active source IP addresses

• # of active destination IP addresses

• …
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Traffic Summary Isolation

• We would prefer that the separate aggregation 
reports were independent and isolated:
– Traffic which causes one table to rapidly fill should not 

interfere with the accuracy of the other tables

• To solve this, we:
– Adjust the sampling rates independently for each report

– Dynamically adapt memory consumption for each 
separate table to ensure high fidelity for all
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Bottlenecks
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Picking a Counting Algorithm


