
Scalability of Routing:
Compactness and Dynamics

Dmitri Krioukov (CAIDA)
dima@caida.org

Kevin Fall (Intel Research) and kc claffy (CAIDA)

IETF-67

mailto:dima@caida.org


Shocking news

There exist routing algorithms such that even 
if all of 2128 IPv6 ‘nodes’ are completely de-
aggregated (i.e., all IPv6 addresses are used 
as flat IDs), the ‘DFZ’ routing tables still 
contain less than 1282 ~ 16,000 entries
(~1000 entries for IPv4)



Caveats of the shocking news

Assumptions about Internet topology [it’s 
scale-free] (realistic)
Assumptions about possibilities to not 
always follow shortest paths [stretch >1] 
(realistic)
Assumptions about having the ‘full view’ of 
the graph [the network is static] (unrealistic)



Outline

What causes scalability problems (in a nutshell)
Why network topology is important
Why static routing scales almost infinitely on realistic 
topologies
Why name-dependent compact routing is a generalization 
of ‘hierarchical’ routing
Why and how name-independent compact routing 
delivers the desired locator/ID split
Why locator/ID split (name-independence) can NOT buy 
us a free lunch
How you can help
Why you can cheer up



Major causes of scalability problems

The Internet is:
� large and growing
� dynamic and more dynamic

Address de-aggregation
� lots of reasons
� most of them are well-documented



Extreme form of de-aggregation

All IPv[46] addresses need to be 
represented as individual nodes of the 
global Internet topology graph



Extreme forms of aggregation

Trees Grids



Shocking news (of 1999)

The Internet is neither a tree or a grid
The Internet is…



What we’ve got



Scale-free topologies

Dangerous waters
� lots of polemics about if the Internet is ‘scale-free’ or 

not and about what ‘scale-free’ means
� lots of recent work on Internet topology data analysis

But all parties (and data ☺) seem to agree that the 
Internet, both at the router- and AS-levels, has:
� heavy-tailed degree distributions (power-laws)

� small average shortest path lengths, as a consequence

� strong clustering



Properties of scale-free networks

They do not allow for efficient address 
aggregation
But they do allow for extremely efficient
static compact routing



Compact routing

Construct routing algorithms such that
� given the full view of the network topology
� the trade-off between routing table sizes and stretch is balanced in 

the most efficient way
Stretch is a measure of the increase of lengths of paths 
produced by a routing algorithm compared to shortest path 
lengths
� compact routing algorithms make routing table sizes compact by 

means of omitting some details of the network topology in an 
efficient way such that the resulting path length increase stays
small

A routing algorithm is compact if (definition):
� Node address and packet header sizes scale polylogarithmically
� Routing table sizes scale sublinearly
� Stretch is a constant (does not grow with the network size at all!)



Two classes of compact routing

Universal
� applicable to ALL 

graph

Specialized
� utilize peculiarities of 

network topologies of 
a certain type in order 
to achieve better 
performance



Examples of why topology matters

Routing on the nicest graphs (trees or grids)
� logarithmic address sizes
� logarithmic routing table sizes
� shortest path routing

Routing on all graphs
� shortest path routing

� cannot route with sublinear routing table sizes

� need to allow for at least 3-time path length increase
� to route with sublinear (◊n) routing table sizes



TZ scheme

The scheme is the first optimal (upper 
bounds = lower bounds) universal compact 
routing scheme
� stretch is 3
� routing table size is O(◊n)



TZ scheme internals
neighborhoods (clusters): my neighborhood is a set of nodes closer to me 
than to their closest landmarks
landmark set (LS) construction: iterations of random selections of nodes to 
guarantee the right balance between the neighborhood size (O(◊n)) and LS 
size (O(◊n))
routing table: shortest paths to the nodes in the neighborhood and landmarks
naming: original node ID, its closest landmark ID, the ID of the closest 
landmark’s port lying on the shortest path from the landmark to the node
forwarding at node v to destination d:
� if v = d, done
� if d is in the routing table (neighbor or landmark), use it to route along the 

shortest path
� if v is d’s landmark, the outgoing port is in the destination address in the 

packet, use it to route along the shortest path
� default: d’s landmark in the destination address in the packet and the route

to this landmark is in the routing table, use it



TZ scheme and scale-free graphs

We found that the TZ scheme performs 
essentially optimally on scale-free (Internet-
like) graphs: all other graphs yield worse 
results
This finding was the first indicator that 
scale-free topologies are particularly ‘well-
structured’ and allow for outstanding 
routing performance



BC scheme

The scheme is the first scheme specialized for scale-free 
graphs
Internals
� find the highest-degree node in the graph
� grow the shortest path tree rooted at it
� find the core, which is all nodes located within maximum distance d

from the highest degree node
� grow small number (e) of trees to cover all the edges that do not belong 

to the main tree and lie outside of the core
� the larger d, the smaller e

� use known ultra-compact routing algorithms to route on these trees
Guarantees
� Additive stretch d
� Routing table sizes O(e log2 n)



Why BC scheme is infinitely scalable

Diameter of scale-free graphs grows as O(log n)
If we allow for a logarithmic additive stretch d, we 
can let the core grow to encompass the whole 
graph in order to make e constant
Routing table size is thus O(log2 n)
And log2 2128 = 1282

Fed with the current Internet AS-level topology, 
the BC scheme produces
� routine table with 22 entries (1025 bits)
� multiplicative stretch of 1.01



A bit of pessimism

The algorithms are essentially static
� Topology pre-processing (pre-computation) 

costs are not considered
� Distributed implementations are possible, but 

the bounds for the number of messages they 
need to generate in order to process a topology 
change are not considered



Another classification
of compact routing algorithms

Name-dependent
� routing algorithms require 

special forms of node 
addressing in order to 
embed useful topological 
information in addresses

� in other (Yakov’s) words: 
“addressing follows 
topology”

� if topology admits 
aggregation, we have a 
generalization of 
‘hierarchical’ routing

Name-independent
� routing algorithms can work 

on arbitrary topologies with 
arbitrary node 
addresses/IDs

� in other (contrary to 
Yakov’s) words: neither 
addressing follows 
topology, nor topology 
follows addressing

� name-independent compact 
routing can thus route of 
flat IDs



Shocking news
on name-independence

There exist universal name-independent 
routing algorithms with the same 
performance guarantees as their name-
dependent counterparts



Name-independence
vs. locator/ID split

Any name-independent compact routing 
algorithm implements a form of locator/ID 
split by having
� name-dependent compact routing using locators 

underneath, and on top of that:
� ID-to-locator-mapping information, efficiently 

distributed among nodes so that not to break 
performance guarantees



Why people want to split
locators and IDs

If addresses follow topology, then as soon as topology 
changes addresses must change as well, which does not 
scale
For better scaling, we thus need to split the location and ID 
parts in our addressing architecture. Period.
BUT THERE IS NO FREE LUNCH: if the network is 
dynamic (links come and go, nodes move), we still need to 
have up-to-date information on where the destination ID 
currently is
In addition to properly updating locators (to follow 
topology), we also need to dynamically update the ID-to-
locator mapping (distributed) database
These considerations directly apply to name-independent 
compact routing



Abraham et al. scheme

The scheme is the first optimal (upper 
bounds = lower bounds) universal name-
independent compact routing scheme
� stretch is 3
� routing table size is O(◊n)



Abraham internals for metric spaces

neighborhoods (balls): my neighborhood is a set of O(◊n) nodes closest to 
me
coloring: color every node by one of O(◊n) colors (O(◊n) color-sets 
containing O(◊n) nodes each), s.t. every node’s neighborhood contains at least 
one representative of every color (all colors are ‘everywhere dense’ in the 
metric space)
hashing names to colors: just use first log(◊n) bits of some hash function 
values (it’s ok w.h.p.)
routing table: nodes in the neighborhood and nodes of the same color
forwarding at node v to destination d:
� if v = d, done
� if d is in the routing table (neighbor or v’s color), use it to route along the 

shortest path
� default: forward to v’s closest neighbor of d’s color

has been implemented and deployed (overlay ‘Tulip’ on PlanetLab)



Abraham internals for graphs
LS set: all nodes l of one selected color
ultra-compact routing on trees: every node resides in O(◊n) of such trees T:
routing table of v:
� shortest-path links to neighbors
� T(l,v) for all landmarks l (i.e., the routing table produced for v by tree-routing on 

the shortest-path tree rooted at l)
� T(x,v) for all neighbors x
� for all nodes u of v’s color, either (whatever corresponds to a shorter path):

� info for path in T(lu) (v → T(lu) → u), or
� info for path via w, where w is s.t.: 1) v is a w’s neighbor, and 2) w’s and u’s

neighborhoods are one hop away from each other (v → w → x → y → u, where v,x are 
w’s neighbors and y is u’s neighbor)

forwarding at node v to destination d:
� if v = d, done
� if d is in the routing table (neighbor or landmark or v’s color), use it
� default: forward to v’s closest neighbor of d’s color



Abraham on the Internet topology

Routing table sizes are still small
� ~6k entries and ~300k bits

Stretch is somewhat less exciting
� ~1.5

No estimates of (pre-)computation or 
adaptation costs (future work)



Conclusions

Main non-problems with routing scalability
� Routing table sizes: routing tables can be made 

extremely succinct by using modern compact routing 
algorithms inducing only infinitesimal path length 
increase on realistic topologies

Main problems with routing scalability
� Full view: all known routing algorithms, either 

envisioned in theory or used in practice today, require 
that all nodes (in a routing ‘domain’) have the full view 
of the network topology graph (link-state, compact 
routing) or at least of the distances to all the 
destinations (distance- or path-vector)

� Dynamics: this topology information must be promptly 
updated, at all nodes, if the network is dynamic



How you (engineering and operation 
communities) can help

Bring more awareness (e.g., by publishing 
RFCs, papers, etc.) about:
� that the problem exists, and
� its specific details (e.g., how large FIBs will be 

or how much churn BGP will produce in X 
years, etc.)



How you can help

Build bridges to other communities: the research 
community in the first place
� the problem is too hard

� if the realistic topologies delivered the worst case of the known 
lower bounds for routing convergence/adaptation costs, then the 
problem would be fundamentally unsolvable

� the complete knowledge required to solve the problem is 
distributed across different communities and across 
different groups within the communities

� the problem can hardly be solved by one community or 
group in isolation

� research community is largely unaware of the problem and 
its details



How you can help

Talk to your favorite funding agency
� as a concerted inter-community research effort 

is needed
Do research!



A bit of optimism

The core of the problem appears to be that we need to 
have the full up-to-date view of a dynamic network
In 1966, Stanley Milgram performed experiments 
with packet forwarding across social (acquaintance) 
networks
The experiments demonstrated that humans do not 
need the global view to route packets efficiently over 
dynamic topologies that have the macroscopic 
structure similar to the Internet’s
Can humans build routing devices that would do the 
same is the question


	Scalability of Routing:�Compactness and Dynamics
	Shocking news
	Caveats of the shocking news
	Outline
	Major causes of scalability problems
	Extreme form of de-aggregation
	Extreme forms of aggregation
	Shocking news (of 1999)
	What we’ve got
	Scale-free topologies
	Properties of scale-free networks
	Compact routing
	Two classes of compact routing
	Examples of why topology matters
	TZ scheme
	TZ scheme internals
	TZ scheme and scale-free graphs
	BC scheme
	Why BC scheme is infinitely scalable
	A bit of pessimism
	Another classification�of compact routing algorithms
	Shocking news�on name-independence
	Name-independence�vs. locator/ID split
	Why people want to split�locators and IDs
	Abraham et al. scheme
	Abraham internals for metric spaces
	Abraham internals for graphs
	Abraham on the Internet topology
	Conclusions
	How you (engineering and operation communities) can help
	How you can help
	How you can help
	A bit of optimism

