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Clean slate:
reassess fundamental assumptions

Information transmission
between nodes
in networks that are
� large-scale and growing
� dynamic and more dynamic
� self-* and more *



Dynamics

graphs are no longer good network abstractions
graphs are static, networks are dynamic
routing ‘without graphs’ (paradigm shifts)
� reinforcement learning…
� operations (e.g., for DTNs)…
� multicommodity flow problem
� physical routing

too hard to shift paradigms and live without graphs
� NP-hardness everywhere
� approximations are slow
� media required for physical routing does not seem to exist

let’s not shift paradigms now and check if we’ve done 
everything we can about graphs



Self-*

many examples of large-scale self-
grown/organized networks
all of them have
� power-laws

� with γ ~ 2.1
� small-world

� small average distances and diameters
� consequence of power-laws

� strong clustering
� not a consequence of power-laws

e.g.: AS-level topo and topo of metabolic 
reactions are just the same



Routing (with graphs)

hierarchical
location
address
name-dependent

non-hierarchical
ID
name
name-independent



Hierarchy/name-dependence is:

good when network is 
static
has a ‘nice structure’
� trees are best (that’s 

why we use word 
hierarchical): you can 
route
� along shortest paths
� with logarithmic routing 

tables
� with constant lookup 

times

bad when network is
dynamic
� have to rename nodes!

‘unstructured’



Hierarchy/name-dependence

is recognized as a scalability problem both in
� theoretical community, and
� networking community



Non-hierarchical/flat routing ideas

DHTs
name-independent compact routing



DHT idea

problem formulation
� given

� some metric space M (that is, ‘underlay’)
� find

� map: M → E s.t. routing in E is ‘easy’ (e.g., scales infinitely)

standard choice of E is an Euclidean space, since routing in 
Euclidean spaces is no problem
� existence of angles gives a sense of direction (‘just go `there`’)
� routing table sizes are constant (don’t depend on the network size)
� greedy routing is shortest path routing,

� but: in E, not in M!



Compact routing (CR)

problem formulation
� given

� graph G (so is its metric space!)
� find

� map (routing function): (s, t) → ps (where s is a source (or current node), 
t is a target, ps is a port at s on the path to t), s.t. routing table size 
(memory space) and path lengths (stretch) are nicely balanced

name-dependent (ND)
� routing can rename nodes as needed (e.g., injecting some topological 

information into node names) in order to make routing easier
name-independent (NI)
� nodes names are also given (e.g., from a flat space) and cannot be 

changed



DHTs vs. NICR (main point)

NICR does not require underlay
it works on a given topology



CR ideas

◊n μ ◊n = n
(n1/k)k = n



NI ideas

◊n μ ◊n = n



NDCR example
(stretch: 3, space: O(◊n))

neighborhoods (clusters): my neighborhood is a set of nodes closer to me 
than to their closest landmarks
landmark set (LS) construction: iterations of random selections of nodes to 
guarantee the right balance between the neighborhood size (O(◊n)) and LS 
size (O(◊n))!
routing table: shortest paths to the nodes in the neighborhood and landmarks
naming: original node ID, its closest landmark ID, the ID of the closest 
landmark’s port lying on the shortest path from the landmark to the node
forwarding at node v to destination d:
� if v = d, done
� if d is in the routing table (neighbor or landmark), use it to route along the 

shortest path
� if v is d’s landmark, the outgoing port is in the destination address in the 

packet, use it to route along the shortest path
� default: d’s landmark in the destination address in the packet and the route

to this landmark is in the routing table, use it



NICR example (for metric spaces)
(stretch: 3, space: O(◊n))

neighborhoods (balls): my neighborhood is a set of O(◊n) nodes closest to 
me
coloring: color every node by one of O(◊n) colors (O(◊n) color-sets 
containing O(◊n) nodes each), s.t. every node’s neighborhood contains at 
least one representative of every color (all colors are ‘everywhere dense’ in 
the metric space)
hashing names to colors: just use first log(◊n) bits of some hash function 
values (it’s ok w.h.p.)
routing table: nodes in the neighborhood and nodes of the same color
forwarding at node v to destination d:
� if v = d, done
� if d is in the routing table (neighbor or v’s color), use it to route along 

the shortest path
� default: forward to v’s closest neighbor of d’s color

has been implemented and deployed (overlay ‘tulip’ on planetlab)



NICR example (for graphs)
(stretch: 3, space: O(◊n))

LS set: all nodes l of one selected color
NDCR on trees: every node resides in O(◊n) of such trees T:
routing table of v:
� shortest-path links to neighbors
� T(l,v) for all landmarks l (i.e., the routing table produced for v by NDCR on the 

shortest-path tree rooted at l)
� T(x,v) for all neighbors x
� for all nodes u of v’s color, either (whatever corresponds to a shorter path):

� info for path in T(lu) (v → T(lu) → u), or
� info for path via w, where w is s.t.: 1) v is a w’s neighbor, and 2) w’s and u’s

neighborhoods are one hop away from each other (v → w → x → y → u, where v,x are 
w’s neighbors and y is u’s neighbor)

forwarding at node v to destination d:
� if v = d, done
� if d is in the routing table (neighbor or landmark or v’s color), use it
� default: forward to v’s closest neighbor of d’s color



NICR ideas

use NDCR underneath
� no surprise since still need to locate the target, quite a fundamental 

‘problem’
use the graph’s metric structure to encode how the 
information on mapping of given (flat) names to NDCR 
addresses is distributed among nodes in a balanced ◊n μ
◊n manner
examples of other NI tricks (from other schemes):
split n names into ◊n blocks containing ◊n names each, 
and agree that:
� i’th farthest node from me keeps NI2ND tables for i’th block, or
� do BFS rooted at me, node with BFS number i keeps NI2ND tables 

for i’th block
� etc.



Generic/universal schemes

lower bounds
� shortest path (s = 1) ⇒ O(n)
� 1 ≤ s < 3 ⇒ W(n)
� 3 ≤ s < 5 ⇒ W(◊n)

upper bounds
� ND, s = 3, O(n2/3), Cowen, SODA’99
� ND, s = 3, O(◊n), Thorup&Zwick, SPAA’01
� NI, s = 5, O(◊n), Arias et al., SPAA’03
� NI, s = 3, O(◊n), Abraham et al., SPAA’04



Direction change:
from generic to specific

average case is much better than the worst case
(as always with complexity ☺)
realistic case is even better
(as often with complexity ☺)



Design specifically for realistic 
(scale-free) topologies

Brady&Cowen, ALENEX’06
� extract d-core (nodes at maximum distance d from the highest 

degree node) to achieve ‘right’ balance between d and e, the 
number of edges to remove from the fringe (graph \ core) to make 
it forest

� additive stretch = d, space O(e)
Carmi, Cohen&Havlin, in progress
� find H highest degree nodes (hubs)
� name nodes by the paths to their closest hubs
� store routes to all hubs and 1-hop neighbors
� route either to the neighbor, or down the path if i’m a part of the 

name, or up to the destination’s hub in the name
� average stretch is small, space is O(H + kmax)



Scale-free networks are theoretically 
challenging

not so much of mathematically rigorous results
too diverse communities involved (networking, 
CS theory, physics, math, statistics)
efforts in different directions, attempts to sync up 
(e.g., last year: Aldous’s workshop at MSRI; this 
year: CAIDA’s WIT, Barabasi’s, Bollobas’s
workshops, etc.)



CS theory decides not to wait
routing on graphs
� with bounded doubling dimension

� α is the graph’s doubling dimension if every ball of radius 2r can be covered by at most α balls of 
radius r

� unfortunately, distance distributions in realistic networks approach δ-functions in the large network 
limit, α is infinite in such networks

� excluding a fixed minor
� minor is a graph that can be obtained from a given graph by vertex/edge deletions and/or edge 

contractions
� Robertson&Seymor’s deep structure theorem: for any class of graphs closed under minor-taking, 

there is a finite obstruction set of graphs that cannot be obtained as minors (e.g., trees exclude K3, 
planar graphs exclude K5 and K3,3)

� connection to treewidth: for every planar H(V,E), there is constant c, s.t. for every G, if H is not G’s 
minor, then G’s treewidth is at most c (c can be large though, e.g., 204|V|+8|E|5)

� treewidth of graph G:
� is the minimal width of G’s treewidth decomposition T (the minimum is taken over all possible T’s)
� treewidth decomposition T is a tree whose nodes are called bags, they are subsets of G’s nodes, s.t.:

• the union of all bag is all G’s nodes
• every pair of adjacent nodes in G resides in at least one bag
• for any G’s node, the set of bags containing it forms a subtree in T

� width of T is its maximum bag size minus 1
� treewidth measures the accuracy of approximation of G’s topology by a tree; recall that routing on 

trees is easy!
searching on graphs



Graph searching

Milgram’s expreiments, 1967
Kleinberg model, 2000
� d-dimensional grid augmented with long-range links with 

harmonic distribution (ρ(x,y)-α)
� routing is greedy in the underlying grid, excluding long-range links
� phase transition (polynomial-to-polylogarithmic number of routing 

hops) at the ‘right’ form of the long-range distribution (α = d)
Fraigniaud model, 2005
� a graph with bounded treewidth or strong clustering(!) augmented

with long-range links to centroids of subtrees of the graph’s 
treewidth decomposition

Kleinberg’s review and open problems, 2006



Graph searching hype

attempts to formalize efficient routing without global view 
(no M or G is given!!!)
possesses infinite scalability (assuming neighborhoods do 
not explode)
supports highly dynamic networks (assuming there is a 
relatively static meta-topology)
naturally supports any kind of (flat) topologies (assuming 
they can be decomposed into local and global parts that are 
‘nice’)
is closest to being analytically solvable in the case with 
realistic networks
bottom line: searching is what you mostly do on the 
Internet today anyway, so why all the nodes should keep 
routing state about all the destinations all the time? ☺



Main points about routing

topology matters (and even more so, according to the 
recent progress)
knowing only my neighborhood, the microscopic structure 
of the network, can i efficiently route globally, through its 
macroscopic structure?
� some existing tools helpful for initial tests trying to answer the 

question:
� Chung’s hybrid model
� minors, treewidth
� dK-series

� connection to the network evolution via inverting the problem: 
maybe navigation easiness is one of the forces behind the evolution 
of large-scale self-* networks (Clauset&Moore)

things to try (further) in the nearer future
� NICR
� graph searching
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