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Clean slate:
reassess fundamental assumptions

# Information transmission
o between nodes
® 1n networks that are

m large-scale and growing
m dynamic and more dynamic

m self-* and more *



Dynamics

® graphs are no longer good network abstractions
graphs are static, networks are dynamic
routing ‘without graphs’ (paradigm shifts)

m reinforcement learning. ..
m operations (e.g., for DTNs)...
m multicommodity flow problem
m physical routing
B too hard to shift paradigms and live without graphs
m NP-hardness everywhere
m approximations are slow
m media required for physical routing does not seem to exist

B let’s not shift paradigms now and check if we’ve done
everything we can about graphs

H =B



Self-*

® many examples of large-scale self-
grown/organized networks

# all of them have

m power-laws
m withy~ 2.1
m small-world

m small average distances and diameters
m consequence of power-laws

m strong clustering
m not a consequence of power-laws

®’ e.g.. AS-level topo and topo of metabolic
reactions are just the same



Routing (with graphs)

B hierarchical B non-hierarchical
B location ® 1D
® address H name

B’ name-dependent B name-independent



Hierarchy/name-dependence 1is:

good when network 1s
B static

® has a ‘nice structure’

m trees are best (that’s
why we use word
hierarchical): you can
route

m along shortest paths

m with logarithmic routing
tables

m with constant lookup
times

bad when network 1s
B dynamic
m have to rename nodes!

® ‘unstructured’



Hierarchy/name-dependence

® 1s recognized as a scalability problem both in
m theoretical community, and

m networking community



Non-hierarchical/flat routing 1deas

B DHTs

B name-independent compact routing



DHT 1dea

B problem formulation
m given
m some metric space M (that is, ‘underlay’)

m find
m map: M — E s.t. routing in E 1s ‘easy’ (e.g., scales infinitely)
® standard choice of E 1s an Euclidean space, since routing in
Euclidean spaces 1s no problem
m cxistence of angles gives a sense of direction (‘just go "there'’)
m routing table sizes are constant (don’t depend on the network size)
m greedy routing is shortest path routing,
m but: in £, not in M!



Compact routing (CR)

® problem formulation
m given
m graph G (so is its metric space!)
m find

m map (routing function): (s, £) — p, (Where s 1s a source (or current node),
t 1s a target, p_ 1s a port at s on the path to ?), s.t. routing table size
(memory space) and path lengths (stretch) are nicely balanced

# name-dependent (ND)

m routing can rename nodes as needed (¢.g., injecting some topological
information into node names) in order to make routing easier

® name-independent (NI)

m nodes names are also given (e.g., from a flat space) and cannot be
changed



DHTs vs. NICR (main point)

NICR does not require underlay

1t works on a given topology



I CR 1deas

Vi xAn=n

(n]/k)k =7



I NI 1deas

Vi xAn=n



®H oo

NDCR example
(stretch: 3, space: O(vn))

neighborhoods (clusters): my neighborhood is a set of nodes closer to me
than to their closest landmarks

landmark set (LS) construction: iterations of random selections of nodes to
guarantee the right balance between the neighborhood size (O(y#)) and LS

size (O(vn))!
routing table: shortest paths to the nodes in the neighborhood and landmarks

naming: original node ID, its closest landmark ID, the ID of the closest
landmark’s port lying on the shortest path from the landmark to the node

forwarding at node v to destination d:
m ifv=d, done
m 1f d is in the routing table (neighbor or landmark), use it to route along the
shortest path

m if vis d’s landmark, the outgoing port is in the destination address in the
packet, use it to route along the shortest path

m default: d’s landmark in the destination address in the packet and the route
to this landmark is in the routing table, use it



1=

NICR example (for metric spaces)
(stretch: 3, space: O(vn))

neighborhoods (balls): my neighborhood is a set of O(y/#) nodes closest to
me

coloring: color every node by one of O(v/n) colors (O(vn) color-sets
containing O(v/7) nodes each), s.t. every node’s neighborhood contains at
least one representative of every color (all colors are ‘everywhere dense’ in
the metric space)

hashing names to colors: just use first log( /) bits of some hash function
values (it’s ok w.h.p.)

routing table: nodes in the neighborhood and nodes of the same color
forwarding at node v to destination d:
m ifv=d, done
m if d is in the routing table (neighbor or v’s color), use it to route along
the shortest path

m default: forward to v’s closest neighbor of d’s color
has been implemented and deployed (overlay ‘tulip’ on planetlab)



NICR example (for graphs)
(stretch: 3, space: O(vn))

® LS set: all nodes / of one selected color
# NDCR on trees: every node resides in O(y/#) of such trees T+
® routing table of v:

m shortest-path links to neighbors

m 7(lv) for all landmarks / (i.e., the routing table produced for v by NDCR on the
shortest-path tree rooted at /)

m  7T{(x,v) for all neighbors x

m for all nodes u of v’s color, either (whatever corresponds to a shorter path):
m info for pathin 7(7 ) (v — T(l ) — u), or

m info for path via w, where wis s.t.: 1) v is a w’s neighbor, and 2) w’s and u’s
neighborhoods are one hop away from each other (v - w — x — y — u, where v,x are
w’s neighbors and y is ©’s neighbor)

® forwarding at node v to destination d:
m if v=d, done
m 1f d is in the routing table (neighbor or landmark or v’s color), use it
m default: forward to v’s closest neighbor of d’s color



NICR 1deas

# use NDCR underneath

m no surprise since still need to locate the target, quite a fundamental
‘problem’

B use the graph’s metric structure to encode how the
information on mapping of given (flat) names to NDCR
addresses is distributed among nodes in a balanced Vn X
v/ n manner

B examples of other NI tricks (from other schemes):
split n names into v/ n blocks containing v/z names each,
and agree that:
m ;’th farthest node from me keeps NI2ZND tables for i’th block, or

m do BFS rooted at me, node with BFS number i keeps NI2ND tables
for i’th block

[ St




Generic/universal schemes

B’ lower bounds
m shortest path (s =1) = On)
W kel L S S O
m3<s<5= A\n)
B’ upper bounds
m ND, 5 = 3, O(n23), Cowen, SODA 99
m ND, s =3, O(\/n), Thorup&Zwick, SPAA 01
m NI s =5, O(\/n), Arias et al., SPAA 03
m NI, s =3, O(+/n), Abraham et al., SPAA 04



Direction change:
from generic to specific

B average case 1s much better than the worst case
(as always with complexity ©)

® realistic case 1s even better
(as often with complexity ©)



Design specifically for realistic
(scale-free) topologies

# Brady&Cowen, ALENEX'06

extract d-core (nodes at maximum distance d from the highest
degree node) to achieve ‘right’ balance between d and e, the
number of edges to remove from the fringe (graph \ core) to make
it forest

additive stretch = d, space O(e)

#® Carmi, Cohen&Havlin, in progress

find H highest degree nodes (hubs)
name nodes by the paths to their closest hubs
store routes to all hubs and 1-hop neighbors

route either to the neighbor, or down the path 1f 1’m a part of the
name, or up to the destination’s hub in the name

average stretch is small, space 1s O(H + k)



Scale-free networks are theoretically
challenging

B not so much of mathematically rigorous results

B/ too diverse communities involved (networking,
CS theory, physics, math, statistics)

® efforts in different directions, attempts to sync up
(e.g., last year: Aldous’s workshop at MSRI; this

year: CAIDA’s WIT, Barabasi’s, Bollobas’s
workshops, etc.)



CS theory decides not to wait

B routing on graphs
m with bounded doubling dimension
m o is the graph’s doubling dimension if every ball of radius 2» can be covered by at most a balls of
radius 7

m unfortunately, distance distributions in realistic networks approach J-functions in the large network
limit, o 1s infinite in such networks

m excluding a fixed minor

m minor is a graph that can be obtained from a given graph by vertex/edge deletions and/or edge
contractions
m Robertson&Seymor’s deep structure theorem: for any class of graphs closed under minor-taking,
there is a finite obstruction set of graphs that cannot be obtained as minors (e.g., trees exclude K,
planar graphs exclude K and K ;)
m connection to treewidth: for every planar H(V,E), there is constant c, s.t. fog every G, if H is not G’s
minor, then G’s treewidth is at most ¢ (¢ can be large though, e.g., 204"1*8IE")
m treewidth of graph G:
m is the minimal width of G’s treewidth decomposition 7' (the minimum is taken over all possible 7°s)
m treewidth decomposition 7 is a tree whose nodes are called bags, they are subsets of G’s nodes, s.t.:
* the union of all bag is all G’s nodes
* every pair of adjacent nodes in G resides in at least one bag
« for any G’s node, the set of bags containing it forms a subtree in 7'
m  width of 7'is its maximum bag size minus 1
m treewidth measures the accuracy of approximation of G’s topology by a tree; recall that routing on
trees is easy!

= Searching on graphs I



Graph searching

B Milgram’s expreiments, 1967
#® Kleinberg model, 2000

m d-dimensional grid augmented with long-range links with
harmonic distribution (p(x,y)%)

m routing is greedy in the underlying grid, excluding long-range links

m phase transition (polynomial-to-polylogarithmic number of routing
hops) at the ‘right’ form of the long-range distribution (o = d)

® Fraigniaud model, 2005

m a graph with bounded treewidth or strong clustering(!) augmented
with long-range links to centroids of subtrees of the graph’s
treewidth decomposition

® Kleinberg’s review and open problems, 2006



Graph searching hype

B’ attempts to formalize efficient routing without global view
(no M or G 1s given!!!)

B’ possesses infinite scalability (assuming neighborhoods do
not explode)

B supports highly dynamic networks (assuming there 1s a
relatively static meta-topology)

B naturally supports any kind of (flat) topologies (assuming
they can be decomposed into local and global parts that are
‘nice’)

B 1s closest to being analytically solvable in the case with
realistic networks

B bottom line: searching 1s what you mostly do on the
Internet today anyway, so why all the nodes should keep
routing state about all the destinations all the time? ©




Main points about routing

® topology matters (and even more so, according to the
recent progress)

# knowing only my neighborhood, the microscopic structure
of the network, can 1 efficiently route globally, through its
macroscopic structure?

m some existing tools helpful for initial tests trying to answer the
question:
m Chung’s hybrid model
m minors, treewidth
m dK-series
m connection to the network evolution via inverting the problem:

maybe navigation easiness 1s one of the forces behind the evolution
of large-scale self-* networks (Clauset&Moore)

B things to try (further) in the nearer future
m NICR
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