
Flat Routing on Curved Spaces

Dmitri Krioukov
(CAIDA/UCSD)

dima@caida.org
Berkeley

April 19th, 2006

mailto:dima@caida.org

Clean slate:
reassess fundamental assumptions

Information transmission
between nodes
in networks that are
� large-scale and growing
� dynamic and more dynamic
� self-* and more *

Dynamics

graphs are no longer good network abstractions
graphs are static, networks are dynamic
routing ‘without graphs’ (paradigm shifts)
� reinforcement learning…
� operations (e.g., for DTNs)…
� multicommodity flow problem
� physical routing

too hard to shift paradigms and live without graphs
� NP-hardness everywhere
� approximations are slow
� media required for physical routing does not seem to exist

let’s not shift paradigms now and check if we’ve done
everything we can about graphs

Self-*

many examples of large-scale self-
grown/organized networks
all of them have
� power-laws

� with γ ~ 2.1
� small-world

� small average distances and diameters
� consequence of power-laws

� strong clustering
� not a consequence of power-laws

e.g.: AS-level topo and topo of metabolic
reactions are just the same

Routing (with graphs)

hierarchical
location
address
name-dependent

non-hierarchical
ID
name
name-independent

Hierarchy/name-dependence is:

good when network is
static
has a ‘nice structure’
� trees are best (that’s

why we use word
hierarchical): you can
route
� along shortest paths
� with logarithmic routing

tables
� with constant lookup

times

bad when network is
dynamic
� have to rename nodes!

‘unstructured’

Hierarchy/name-dependence

is recognized as a scalability problem both in
� theoretical community, and
� networking community

Non-hierarchical/flat routing ideas

DHTs
name-independent compact routing

DHT idea

problem formulation
� given

� some metric space M (that is, ‘underlay’)
� find

� map: M → E s.t. routing in E is ‘easy’ (e.g., scales infinitely)

standard choice of E is an Euclidean space, since routing in
Euclidean spaces is no problem
� existence of angles gives a sense of direction (‘just go `there`’)
� routing table sizes are constant (don’t depend on the network size)
� greedy routing is shortest path routing,

� but: in E, not in M!

Compact routing (CR)

problem formulation
� given

� graph G (so is its metric space!)
� find

� map (routing function): (s, t) → ps (where s is a source (or current node),
t is a target, ps is a port at s on the path to t), s.t. routing table size
(memory space) and path lengths (stretch) are nicely balanced

name-dependent (ND)
� routing can rename nodes as needed (e.g., injecting some topological

information into node names) in order to make routing easier
name-independent (NI)
� nodes names are also given (e.g., from a flat space) and cannot be

changed

DHTs vs. NICR (main point)

NICR does not require underlay
it works on a given topology

CR ideas

◊n μ ◊n = n
(n1/k)k = n

NI ideas

◊n μ ◊n = n

NDCR example
(stretch: 3, space: O(◊n))

neighborhoods (clusters): my neighborhood is a set of nodes closer to me
than to their closest landmarks
landmark set (LS) construction: iterations of random selections of nodes to
guarantee the right balance between the neighborhood size (O(◊n)) and LS
size (O(◊n))!
routing table: shortest paths to the nodes in the neighborhood and landmarks
naming: original node ID, its closest landmark ID, the ID of the closest
landmark’s port lying on the shortest path from the landmark to the node
forwarding at node v to destination d:
� if v = d, done
� if d is in the routing table (neighbor or landmark), use it to route along the

shortest path
� if v is d’s landmark, the outgoing port is in the destination address in the

packet, use it to route along the shortest path
� default: d’s landmark in the destination address in the packet and the route

to this landmark is in the routing table, use it

NICR example (for metric spaces)
(stretch: 3, space: O(◊n))

neighborhoods (balls): my neighborhood is a set of O(◊n) nodes closest to
me
coloring: color every node by one of O(◊n) colors (O(◊n) color-sets
containing O(◊n) nodes each), s.t. every node’s neighborhood contains at
least one representative of every color (all colors are ‘everywhere dense’ in
the metric space)
hashing names to colors: just use first log(◊n) bits of some hash function
values (it’s ok w.h.p.)
routing table: nodes in the neighborhood and nodes of the same color
forwarding at node v to destination d:
� if v = d, done
� if d is in the routing table (neighbor or v’s color), use it to route along

the shortest path
� default: forward to v’s closest neighbor of d’s color

has been implemented and deployed (overlay ‘tulip’ on planetlab)

NICR example (for graphs)
(stretch: 3, space: O(◊n))

LS set: all nodes l of one selected color
NDCR on trees: every node resides in O(◊n) of such trees T:
routing table of v:
� shortest-path links to neighbors
� T(l,v) for all landmarks l (i.e., the routing table produced for v by NDCR on the

shortest-path tree rooted at l)
� T(x,v) for all neighbors x
� for all nodes u of v’s color, either (whatever corresponds to a shorter path):

� info for path in T(lu) (v → T(lu) → u), or
� info for path via w, where w is s.t.: 1) v is a w’s neighbor, and 2) w’s and u’s

neighborhoods are one hop away from each other (v → w → x → y → u, where v,x are
w’s neighbors and y is u’s neighbor)

forwarding at node v to destination d:
� if v = d, done
� if d is in the routing table (neighbor or landmark or v’s color), use it
� default: forward to v’s closest neighbor of d’s color

NICR ideas

use NDCR underneath
� no surprise since still need to locate the target, quite a fundamental

‘problem’
use the graph’s metric structure to encode how the
information on mapping of given (flat) names to NDCR
addresses is distributed among nodes in a balanced ◊n μ
◊n manner
examples of other NI tricks (from other schemes):
split n names into ◊n blocks containing ◊n names each,
and agree that:
� i’th farthest node from me keeps NI2ND tables for i’th block, or
� do BFS rooted at me, node with BFS number i keeps NI2ND tables

for i’th block
� etc.

Generic/universal schemes

lower bounds
� shortest path (s = 1) ⇒ O(n)
� 1 ≤ s < 3 ⇒ W(n)
� 3 ≤ s < 5 ⇒ W(◊n)

upper bounds
� ND, s = 3, O(n2/3), Cowen, SODA’99
� ND, s = 3, O(◊n), Thorup&Zwick, SPAA’01
� NI, s = 5, O(◊n), Arias et al., SPAA’03
� NI, s = 3, O(◊n), Abraham et al., SPAA’04

Direction change:
from generic to specific

average case is much better than the worst case
(as always with complexity ☺)
realistic case is even better
(as often with complexity ☺)

Design specifically for realistic
(scale-free) topologies

Brady&Cowen, ALENEX’06
� extract d-core (nodes at maximum distance d from the highest

degree node) to achieve ‘right’ balance between d and e, the
number of edges to remove from the fringe (graph \ core) to make
it forest

� additive stretch = d, space O(e)
Carmi, Cohen&Havlin, in progress
� find H highest degree nodes (hubs)
� name nodes by the paths to their closest hubs
� store routes to all hubs and 1-hop neighbors
� route either to the neighbor, or down the path if i’m a part of the

name, or up to the destination’s hub in the name
� average stretch is small, space is O(H + kmax)

Scale-free networks are theoretically
challenging

not so much of mathematically rigorous results
too diverse communities involved (networking,
CS theory, physics, math, statistics)
efforts in different directions, attempts to sync up
(e.g., last year: Aldous’s workshop at MSRI; this
year: CAIDA’s WIT, Barabasi’s, Bollobas’s
workshops, etc.)

CS theory decides not to wait
routing on graphs
� with bounded doubling dimension

� α is the graph’s doubling dimension if every ball of radius 2r can be covered by at most α balls of
radius r

� unfortunately, distance distributions in realistic networks approach δ-functions in the large network
limit, α is infinite in such networks

� excluding a fixed minor
� minor is a graph that can be obtained from a given graph by vertex/edge deletions and/or edge

contractions
� Robertson&Seymor’s deep structure theorem: for any class of graphs closed under minor-taking,

there is a finite obstruction set of graphs that cannot be obtained as minors (e.g., trees exclude K3,
planar graphs exclude K5 and K3,3)

� connection to treewidth: for every planar H(V,E), there is constant c, s.t. for every G, if H is not G’s
minor, then G’s treewidth is at most c (c can be large though, e.g., 204|V|+8|E|5)

� treewidth of graph G:
� is the minimal width of G’s treewidth decomposition T (the minimum is taken over all possible T’s)
� treewidth decomposition T is a tree whose nodes are called bags, they are subsets of G’s nodes, s.t.:

• the union of all bag is all G’s nodes
• every pair of adjacent nodes in G resides in at least one bag
• for any G’s node, the set of bags containing it forms a subtree in T

� width of T is its maximum bag size minus 1
� treewidth measures the accuracy of approximation of G’s topology by a tree; recall that routing on

trees is easy!
searching on graphs

Graph searching

Milgram’s expreiments, 1967
Kleinberg model, 2000
� d-dimensional grid augmented with long-range links with

harmonic distribution (ρ(x,y)-α)
� routing is greedy in the underlying grid, excluding long-range links
� phase transition (polynomial-to-polylogarithmic number of routing

hops) at the ‘right’ form of the long-range distribution (α = d)
Fraigniaud model, 2005
� a graph with bounded treewidth or strong clustering(!) augmented

with long-range links to centroids of subtrees of the graph’s
treewidth decomposition

Kleinberg’s review and open problems, 2006

Graph searching hype

attempts to formalize efficient routing without global view
(no M or G is given!!!)
possesses infinite scalability (assuming neighborhoods do
not explode)
supports highly dynamic networks (assuming there is a
relatively static meta-topology)
naturally supports any kind of (flat) topologies (assuming
they can be decomposed into local and global parts that are
‘nice’)
is closest to being analytically solvable in the case with
realistic networks
bottom line: searching is what you mostly do on the
Internet today anyway, so why all the nodes should keep
routing state about all the destinations all the time? ☺

Main points about routing

topology matters (and even more so, according to the
recent progress)
knowing only my neighborhood, the microscopic structure
of the network, can i efficiently route globally, through its
macroscopic structure?
� some existing tools helpful for initial tests trying to answer the

question:
� Chung’s hybrid model
� minors, treewidth
� dK-series

� connection to the network evolution via inverting the problem:
maybe navigation easiness is one of the forces behind the evolution
of large-scale self-* networks (Clauset&Moore)

things to try (further) in the nearer future
� NICR
� graph searching

	Flat Routing on Curved Spaces
	Clean slate:�reassess fundamental assumptions
	Dynamics
	Self-*
	Routing (with graphs)
	Hierarchy/name-dependence is:
	Hierarchy/name-dependence
	Non-hierarchical/flat routing ideas
	DHT idea
	Compact routing (CR)
	DHTs vs. NICR (main point)
	CR ideas
	NI ideas
	NDCR example�(stretch: 3, space: O(n))
	NICR example (for metric spaces)�(stretch: 3, space: O(n))
	NICR example (for graphs)�(stretch: 3, space: O(n))
	NICR ideas
	Generic/universal schemes
	Direction change:�from generic to specific
	Design specifically for realistic (scale-free) topologies
	Scale-free networks are theoretically challenging
	CS theory decides not to wait
	Graph searching
	Graph searching hype
	Main points about routing

