Flat Routing on Curved Spaces

Dmitri Krioukov
(CAIDA/UCSD)
dima@caida.org
Berkeley
April 19th, 2006
Clean slate:
reassess fundamental assumptions

- Information transmission
- between nodes
- in networks that are
 - large-scale and growing
 - dynamic and more dynamic
 - self-* and more *
Dynamics

- graphs are no longer good network abstractions
- graphs are static, networks are dynamic
- routing ‘without graphs’ (paradigm shifts)
 - reinforcement learning…
 - operations (e.g., for DTNs)…
 - multicommodity flow problem
 - physical routing
- too hard to shift paradigms and live without graphs
 - NP-hardness everywhere
 - approximations are slow
 - media required for physical routing does not seem to exist
- let’s not shift paradigms now and check if we’ve done everything we can about graphs
many examples of large-scale self-grown/organized networks
all of them have
- power-laws
 - with $\gamma \sim 2.1$
- small-world
 - small average distances and diameters
 - consequence of power-laws
 - strong clustering
 - not a consequence of power-laws

e.g.: AS-level topo and topo of metabolic reactions are just the same
Routing (with graphs)

- hierarchical
- location
- address
- name-dependent

- non-hierarchical
- ID
- name
- name-independent
Hierarchy/name-dependence is:

- good when network is static
- has a ‘nice structure’
 - trees are best (that’s why we use word *hierarchical*): you can route
 - along shortest paths
 - with logarithmic routing tables
 - with constant lookup times

- bad when network is dynamic
 - have to rename nodes!
 - ‘unstructured’
Hierarchy/name-dependence is recognized as a scalability problem both in
- theoretical community, and
- networking community
Non-hierarchical/flat routing ideas

- DHTs
- name-independent compact routing
DHT idea

- problem formulation
 - given
 - some metric space M (that is, ‘underlay’)
 - find
 - map: $M \rightarrow E$ s.t. routing in E is ‘easy’ (e.g., scales infinitely)

- standard choice of E is an Euclidean space, since routing in Euclidean spaces is no problem
 - existence of angles gives a sense of direction (‘just go ‘there’’)
 - routing table sizes are constant (don’t depend on the network size)
 - greedy routing is shortest path routing,
 - but: in E, not in M!
Compact routing (CR)

- **Problem formulation**
 - Given
 - Graph G (so is its metric space!)
 - Find
 - Map (routing function): $(s, t) \rightarrow p_s$ (where s is a source (or current node), t is a target, p_s is a port at s on the path to t), s.t. routing table size (memory space) and path lengths (stretch) are nicely balanced

- **Name-dependent (ND)**
 - Routing can rename nodes as needed (e.g., injecting some topological information into node names) in order to make routing easier

- **Name-independent (NI)**
 - Nodes names are also given (e.g., from a flat space) and cannot be changed
DHTs vs. NICR (main point)

NICR does not require underlay
it works on a given topology
CR ideas

\[\sqrt{n} \times \sqrt{n} = n \]

\[(n^{1/k})^k = n \]
NI ideas

\[\sqrt{n} \times \sqrt{n} = n \]
NDCR example
(stretch: 3, space: $O(\sqrt{n})$)

- **neighborhoods (clusters):** my neighborhood is a set of nodes closer to me than to their closest landmarks
- **landmark set (LS) construction:** iterations of random selections of nodes to guarantee the right balance between the neighborhood size ($O(\sqrt{n})$) and LS size ($O(\sqrt{n})$)!
- **routing table:** shortest paths to the nodes in the neighborhood and landmarks
- **naming:** original node ID, its closest landmark ID, the ID of the closest landmark’s port lying on the shortest path from the landmark to the node
- **forwarding at node v to destination d:**
 - if $v = d$, done
 - if d is in the routing table (neighbor or landmark), use it to route along the shortest path
 - if v is d’s landmark, the outgoing port is in the destination address in the packet, use it to route along the shortest path
 - default: d’s landmark in the destination address in the packet and the route to this landmark is in the routing table, use it
NICR example (for metric spaces) (stretch: 3, space: $O(\sqrt{n})$)

- **neighborhoods (balls):** my neighborhood is a set of $O(\sqrt{n})$ nodes closest to me

- **coloring:** color every node by one of $O(\sqrt{n})$ colors ($O(\sqrt{n})$ color-sets containing $O(\sqrt{n})$ nodes each), s.t. every node’s neighborhood contains at least one representative of every color (all colors are ‘everywhere dense’ in the metric space)

- **hashing names to colors:** just use first $\log(\sqrt{n})$ bits of some hash function values (it’s ok w.h.p.)

- **routing table:** nodes in the neighborhood and nodes of the same color

- **forwarding at node v to destination d:**
 - if $v = d$, done
 - if d is in the routing table (neighbor or v’s color), use it to route along the shortest path
 - default: forward to v’s closest neighbor of d’s color

- Has been implemented and deployed (overlay ‘tulip’ on planetlab)
NICR example (for graphs)
(stretch: 3, space: $O(\sqrt{n})$)

- **LS set:** all nodes l of one selected color
- **NDCR on trees:** every node resides in $O(\sqrt{n})$ of such trees T:
 - **routing table of v:**
 - shortest-path links to neighbors
 - $T(l,v)$ for all landmarks l (i.e., the routing table produced for v by NDCR on the shortest-path tree rooted at l)
 - $T(x,v)$ for all neighbors x
 - for all nodes u of v’s color, either (whatever corresponds to a shorter path):
 - info for path in $T(l,v) (v \rightarrow T(l,v) \rightarrow u)$, or
 - info for path via w, where w is s.t.: 1) v is a w’s neighbor, and 2) w’s and u’s neighborhoods are one hop away from each other ($v \rightarrow w \rightarrow x \rightarrow y \rightarrow u$, where v,x are w’s neighbors and y is u’s neighbor)
- **forwarding at node v to destination d:**
 - if $v = d$, done
 - if d is in the routing table (neighbor or landmark or v’s color), use it
 - default: forward to v’s closest neighbor of d’s color
NICR ideas

- use NDCR underneath
 - no surprise since still need to locate the target, quite a fundamental ‘problem’
- use the graph’s metric structure to encode how the information on mapping of given (flat) names to NDCR addresses is distributed among nodes in a balanced $\sqrt{n} \times \sqrt{n}$ manner
- examples of other NI tricks (from other schemes):
 - split n names into \sqrt{n} blocks containing \sqrt{n} names each, and agree that:
 - i’th farthest node from me keeps NI2ND tables for i’th block, or
 - do BFS rooted at me, node with BFS number i keeps NI2ND tables for i’th block
 - etc.
Generic/universal schemes

- **lower bounds**
 - shortest path \((s = 1) \Rightarrow O(n)\)
 - \(1 \leq s < 3 \Rightarrow \Omega(n)\)
 - \(3 \leq s < 5 \Rightarrow \Omega(\sqrt{n})\)

- **upper bounds**
 - ND, \(s = 3, O(n^{2/3})\), Cowen, *SODA* ’99
 - ND, \(s = 3, O(\sqrt{n})\), Thorup&Zwick, *SPAA* ’01
 - NI, \(s = 5, O(\sqrt{n})\), Arias et al., *SPAA* ’03
 - NI, \(s = 3, O(\sqrt{n})\), Abraham et al., *SPAA* ’04
Direction change:
from generic to specific

- average case is much better than the worst case
 (as always with complexity 😊)
- realistic case is even better
 (as often with complexity 😊)
Design specifically for realistic (scale-free) topologies

- **Brady & Cowen, ALENEX’06**
 - extract d-core (nodes at maximum distance d from the highest degree node) to achieve ‘right’ balance between d and e, the number of edges to remove from the fringe (graph \ core) to make it forest
 - additive stretch = d, space $O(e)$

- **Carmi, Cohen & Havlin, in progress**
 - find H highest degree nodes (hubs)
 - name nodes by the paths to their closest hubs
 - store routes to all hubs and 1-hop neighbors
 - route either to the neighbor, or down the path if i’m a part of the name, or up to the destination’s hub in the name
 - average stretch is small, space is $O(H + k_{max})$
Scale-free networks are theoretically challenging

- not so much of mathematically rigorous results
- too diverse communities involved (networking, CS theory, physics, math, statistics)
- efforts in different directions, attempts to sync up (e.g., last year: Aldous’s workshop at MSRI; this year: CAIDA’s WIT, Barabasi’s, Bollobas’s workshops, etc.)
CS theory decides not to wait

- **Routing on graphs**
 - with bounded doubling dimension
 - α is the graph’s doubling dimension if every ball of radius $2r$ can be covered by at most α balls of radius r
 - unfortunately, distance distributions in realistic networks approach δ-functions in the large network limit, α is infinite in such networks
 - excluding a fixed minor
 - minor is a graph that can be obtained from a given graph by vertex/edge deletions and/or edge contractions
 - Robertson&Seymor’s deep structure theorem: for any class of graphs closed under minor-taking, there is a finite obstruction set of graphs that cannot be obtained as minors (e.g., trees exclude K_3, planar graphs exclude K_5 and $K_{3,3}$)
 - connection to treewidth: for every planar $H(V,E)$, there is constant c, s.t. for every G, if H is not G’s minor, then G’s treewidth is at most c (c can be large though, e.g., $20^{|V|+8|E|}$)
 - treewidth of graph G:
 - is the minimal width of G’s treewidth decomposition T (the minimum is taken over all possible T’s)
 - treewidth decomposition T is a tree whose nodes are called bags, they are subsets of G’s nodes, s.t.:
 - the union of all bag is all G’s nodes
 - every pair of adjacent nodes in G resides in at least one bag
 - for any G’s node, the set of bags containing it forms a subtree in T
 - width of T is its maximum bag size minus 1
 - treewidth measures the accuracy of approximation of G’s topology by a tree; recall that routing on trees is easy!

- **Searching on graphs**
Graph searching

- Milgram’s experiments, 1967
- Kleinberg model, 2000
 - d-dimensional grid augmented with long-range links with harmonic distribution ($\rho(x,y)^{-\alpha}$)
 - routing is greedy in the underlying grid, excluding long-range links
 - phase transition (polynomial-to-polylogarithmic number of routing hops) at the ‘right’ form of the long-range distribution ($\alpha = d$)
- Fraigniaud model, 2005
 - a graph with bounded treewidth or strong clustering(!) augmented with long-range links to centroids of subtrees of the graph’s treewidth decomposition
- Kleinberg’s review and open problems, 2006
Graph searching hype

- attempts to formalize efficient routing without global view (no M or G is given!!!)
- possesses infinite scalability (assuming neighborhoods do not explode)
- supports highly dynamic networks (assuming there is a relatively static meta-topology)
- naturally supports any kind of (flat) topologies (assuming they can be decomposed into local and global parts that are ‘nice’)
- is closest to being analytically solvable in the case with realistic networks
- bottom line: searching is what you mostly do on the Internet today anyway, so why all the nodes should keep routing state about all the destinations all the time? 😊
Main points about routing

- topology matters (and even more so, according to the recent progress)
- knowing only my neighborhood, the microscopic structure of the network, can i efficiently route globally, through its macroscopic structure?
 - some existing tools helpful for initial tests trying to answer the question:
 - Chung’s hybrid model
 - minors, treewidth
 - dK-series
 - connection to the network evolution via inverting the problem: maybe navigation easiness is one of the forces behind the evolution of large-scale self-* networks (Clauset&Moore)
- things to try (further) in the nearer future
 - NICR
 - graph searching