Random Annotated Graphs

Xenofontas Dimitropoulos
Dmitri Krioukov
George Riley

Georgia Tech
CAIDA
Outline

- Background and annotated graphs.
- Framework for generating random annotated graphs.
- Evaluation results.
- Conclusions and future work/directions.
Topology Generation

Background

- Goal: Generate synthetic network topologies for protocols evaluation.
- Use graphs to represent measured topologies.
- Model growth process or topological properties, e.g., degree distribution.
- Generate synthetic graphs and compare.
Annotated Graphs

- An *annotated graph* is a graph in which:
 - each link has a single annotation from a finite set of link annotations.
 - links can be directed (asymmetric annotations) or undirected (symmetric annotations).
- Annotated graphs can represent useful network information, e.g.:
 - in router-level topologies, link annotations can represent capacities or latencies.
 - in AS-level topologies, link annotations can represent AS relationships, e.g., peer to peer (p2p), customer to provider (c2p), etc.
- Annotated graphs capture more information than plain (un)directed graphs.
Topology Generation Diagram

Internet

Topology Generator

Measure

Model growth process or topological properties

Compare

Annotated graph
Outline

- Background and annotated graphs.
- Framework for generating random annotated graphs.
 - Annotation-aware topological properties.
 - Reproduce annotation-aware properties in synthetic graphs.
- Evaluation results.
- Conclusions and future work/directions.
Topological Properties

- Annotation-degrees:
 - customer-degree (d_{p2c}): number of customers of a node.
 - provider-degree (d_{c2p}): number of providers of a node.
 - peer-degree (d_{p2p}): number of peers of a node.

- Joint Annotation-Degree Distribution (JADD): joint distribution of annotation-degrees.

- Joint Degree Distribution (JDD) of p2p (c2p) links: joint distribution of total degrees of connected nodes with p2p (c2p) edges.
Reproduce JADD

- Generate N random triplets of $p2c$-, $p2p$-, and $c2p$-degrees (d^i_{p2c}, d^i_{p2p}, d^i_{c2p}), $0 \leq i < N$.
- For each degree triplet introduce a node with d^i_{p2c} $p2c$-, d^i_{c2p} $c2p$-, and d^i_{p2p} $p2p$-stubs.
- Perform one random matching between $c2p$ and $p2c$ stubs and one between $p2p$ stubs.
- Extract largest connected component and remove self-loops and multi-edges to get final graph.
Reproduce JADD and JDD

- Generate random triplets of p2c, c2p-, and p2p-degrees \((d^i_{p2c}, d^i_{p2p}, d^i_{c2p}) \), \(0 \leq i < N \), and introduce p2c, c2p, and p2p stubs labeled w/ total degrees.
- For each of the three stub-types create a sequence of degrees.
- Join c2p (p2p) and p2c (p2p) sequences into a sequence of degree pairs that reflects c2p (p2p) JDD. Each degree pair reflects a disconnected link.
- For each triplet of total degree d, randomly select \(d_{p2c} \) p2c edge-ends, \(d_{p2p} \) p2p edge-ends and \(d_{c2p} \) c2p edge-ends from the set of edge-ends labeled with d and construct a node.
Outline

- Background and annotated graphs.
- Framework for generating random annotated graphs.
 - Define a set of annotation-aware topological properties.
 - Reproduce these properties in synthetic annotated graphs.
- Evaluation results.
- Conclusions and future work/directions.
Degree distribution

Real versus generated degree distribution

- O real degree
- • generated degree
Annotation-degree distributions

Real versus generated degree distributions

- real provider-degree
- real peer-degree
- real customer-degree
- generated provider-degree
- generated peer-degree
- generated customer-degree
Matrix scatterplot for measured topology

Matrix scatterplot for synthetic topology

- number of providers
- number of peers
- number of customers
- number of customers
Conclusions and Future Work

- Proposed using annotated graphs to model network topologies.
- Described framework to generate synthetic annotated graphs.
- Implemented our framework for generating synthetic AS topologies with synthetic c2p and p2p annotations.
- Outlined evaluation results.
- Work in progress:
 - Richer evaluation and comparison with other generators.
- Future directions:
 - Public release of generator.
 - Generalize to introduce node annotations, which can represent router models, AS types, etc.
Questions and publications

- **Towards a Topology Generator Modeling AS Relationships**
 Xenofontas Dimitropoulos; George Riley; Dima Krioukov; Ravi Sundaram

- **Modeling Autonomous System Relationships**
 Xenofontas Dimitropoulos; George Riley
 To appear in 20th Principles of Advanced and Distributed Simulation (PADS), 2006

- **Inferring AS Relationships: Dead End or Lively Beginning?**
 Xenofontas Dimitropoulos; Dima Krioukov; Bradley Huffaker; kc claffy; George Riley
 4th Workshop on Efficient and Experimental Algorithms (WEA), 2005.

- **AS Relationships: Inference and Validation**
 Xenofontas Dimitropoulos; Dima Krioukov; Marina Fomenkova; Bradley Huffaker; Young Hyun; kc claffy; George Riley
 Under submission.

- **AS Relationships Repository**
Extra Slides
AS relationships

- AS-level topology of the Internet, i.e., interconnections between ASs.
- AS relationships:
 - are customer to provider (c2p) or peer to peer (p2p).
 - reflect business agreements.
 - determine routing (valley free model).
Simulation Examples

- Present topology generators do not model AS relationships.
- Simulation artifacts:
 - AS paths are shorter than in reality.
 - Number of alternative AS paths available to an AS is larger than in reality.
 - The traffic load on ASs and AS links is lower than in reality.

<table>
<thead>
<tr>
<th>AS number</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>AS paths enabled AS relationships</td>
<td>12</td>
<td>13</td>
<td>16</td>
<td>15</td>
<td>13</td>
<td>15</td>
<td>15</td>
<td>13</td>
</tr>
<tr>
<td>AS relationships disabled</td>
<td>12</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>6</td>
</tr>
</tbody>
</table>
Computing JADD

- Collect AS topology.
- Infer c2p and p2p relationships.
- Fit JADD:
 - Fit annotation-degree distributions using splines.
 - Model correlations using historical copula data.
How to produce random pairs from an empirical bivariate distribution?

- Use splines to fit marginal distributions.
- Generate N random number from each of the two marginal models.
- Joint the two degree sequence into a sequence of degree pairs so that these degree pairs respect a given JDD.
How to join two degree sequences?

- **Input:** two degree sequences, \(p_i \) and \(q_i \), of length \(N \).
- **Output:** one sequence of degree pairs so that these pairs respect a historical JDD.

- **Algorithm:**
 - Randomly select \(N \) degree pairs \((x_i, y_i)\) from historical data.
 - Map each degree pair \((x_i, y_i) \rightarrow (R(x_i), R(y_i)) \rightarrow (p_i, q_i)\)
degree: 6