The Joint Degree Distribution as a Definitive Metric of the Internet AS-level Topologies

Priya Mahadevan, Dimitri Krioukov, Marina Fomenkov, Brad Huffaker, Xenofontas Dimitropoulos, kc claffy, Amin Vahdat

CAIDA, SDSC, UC San Diego

Published in ACM SIGCOMM CCR, January 2006
www.caida.org/publications/papers/2006/as_topology

2006 ISMA WIT, San Diego, May 2006
Plan

- Data sources:
 - collection methodologies
 - limitations

- Graph metrics
 - definitions
 - values in our graphs
 - interdependencies

- **Joint Degree Distribution (JDD)** - the definitive metric
 - defines values of other metrics
 - captures crucial graph properties

- Comparison of observed graphs with random graph models
Data Sources - 1

- BGP Tables
 Border Gateway Protocol - for routing among ASes

- RouteViews collects BGP routing tables
 www.routeviews.org
 - 7 collectors, each has a number of globally placed peers
 - archives both static snapshots and dynamic data
 - data are publicly available

- For this study - data from March 2004
 - used collector with the largest # of peers = 68
 - discarded AS-sets and private ASes
 - merged 31 daily graphs into one graph

=> BGP graph
Data Sources - 2

- **Traceroute**
 sequence of IP hops along the forward path from the to a given destinations

- **CAIDA traceroute-based tool** *skitter*
 - continuous measurements since 1998
 - more than 20 monitors all over the world
 - destination list of about a million IPv4 addresses

- For this study - data from March 2004
 - mapped IP addresses to origin AS numbers using BGP tables from RouteViews
 - discarded about 5% of links ambiguous mappings, measurement inaccuracies
 - merged 31 daily graphs into one graph

 $=>$ *skitter graph*

- **daily derived AS-level topology graphs available at**
 www.caida.org//tools/measurement/skitter/as_adjacencies.xml
Data Sources - 3

- **WHOIS**
 - a collection of databases with AS peering information
 - manually maintained
 - no timely updates
 - *RIPE WHOIS* is the most current and reliable
 (but covers mostly European infrastructure)

- For this study -
 - RIPE WHOIS database dump, April 7, 2004
 - looked for records indicating links btw ASes
 - discarded external and private ASes

 \(\Rightarrow\) *WHOIS graph*
Data Sources (cont.)

The three graphs present different views of the Internet

- **skitter graph**
 - topology of actual Internet traffic flows
 => *data plane*

- **BGP graph**
 - topology of the routing system
 => *control plane*

- **WHOIS graph**
 - topology created by human actions
 => *management plane*

- both skitter and BGP are *traceroute-like* explorations
- WHOIS reports peering arrangements made by humans
- we verified that differences between WHOIS and the other two graphs are not due to geographical bias
Topology Characteristics

Average Degree

- \(n = \) number of nodes (or **graph size**)
 \(m = \) number of links

- average node degree \(\bar{k} = \frac{2m}{n} \)

- the coarsest connectivity characteristic

<table>
<thead>
<tr>
<th></th>
<th>skitter</th>
<th>BGP tables</th>
<th>WHOIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of nodes</td>
<td>9,204</td>
<td>17,446</td>
<td>7,485</td>
</tr>
<tr>
<td>Number of edges</td>
<td>28,959</td>
<td>40,805</td>
<td>56,949</td>
</tr>
<tr>
<td>Avg node degree</td>
<td>6.29</td>
<td>4.68</td>
<td>15.22</td>
</tr>
</tbody>
</table>

- \(\bar{k}-\text{order:} \) BGP - skitter - WHOIS
 increasing average degree
Degree Distribution

- \(n(k) \) = number of nodes of degree \(k \) (\(k \)-degree nodes)
- \(P(k) = n(k)/n \) – probability that a node is \(k \)-degree

- both PDFs and CCDFs are in the \(\bar{k} \)-order, BGP-skitter-WHOIS
- skitter graph is closest to power law, \(\gamma = -2.25 \)
- WHOIS graph is not power law at all
 has excess of medium-degree nodes
Joint Degree Distribution (JDD)

- $m(k_1, k_2)$ = number of edges connecting nodes of degrees k_1 and k_2

- $P(k_1, k_2) = \mu(k_1, k_2) \times m(k_1, k_2)/(2m)$
 (where $\mu(k_1, k_2)$ is 1 if $k_1 = k_2$ and 2 otherwise)
 - probability that an edge connects k_1- and k_2-degree nodes

- JDD contains more information about connectivity in a graph than degree distribution

- JDD provides information about 1-hop neighborhoods around a node

- given JDD $P(k_1, k_2)$, one can always restore $P(k)$ and \bar{k}
Joint Degree Distribution (JDD) - cont.

- Summary statistic of JDD: assortativity coefficient
 \[r \sim \sum_{k_1, k_2 = 1}^{k_{\text{max}}} k_1 k_2 (P(k_1, k_2) - k_1 k_2 P(k_1) P(k_2)/\bar{k}^2) \]

 \[-1 \leq r \leq 1\]
 - directly related to likelihood defined by Li et al.

- Disassortative networks with \(r < 0 \):
 - excess of radial links connecting nodes of dissimilar degrees
 - vulnerable to random failures and targeted attacks

- Assortative networks with \(r > 0 \):
 - excess of tangential links connecting nodes of similar degrees
Joint Degree Distribution (JDD) - cont.

- all three of our graphs are disassortative

<table>
<thead>
<tr>
<th>Assortativity Coefficient (r)</th>
<th>skitter</th>
<th>BGP tables</th>
<th>WHOIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>r-order: WHOIS - BGP - skitter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>decreasing assortativity coefficient</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>both skitter and BGP are traceroute-like explorations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– discover more radial links (connecting low-degree customer ASes and high-degree large ISP ASes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>– fail to detect tangential links (connecting nodes of similar degrees)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHOIS-based methodology finds abundant medium-degree tangential links</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| \Rightarrow WHOIS graph is more assortative
Joint Degree Distribution (JDD) - cont.

- summary statistic of JDD:

 the average neighbor connectivity $k_{nn}(k) = \sum_{k' = 1}^{k_{max}} k' P(k' | k)$

 – the average neighbor degree of the average k-degree node

- low degrees – r-order, skitter at the top
- high degrees – \overline{k}-order, WHOIS at the top
Clustering

- $\bar{m}_{nn}(k) = \text{number of links between the neighbors of } k\text{-degree nodes}$
- $k(k - 1)/2 = \text{the maximum possible number of such links}$
- $C(k) = 2\bar{m}_{nn}(k)/[k(k - 1)]$ – local clustering

- low degrees – r-order, skitter at the top
- high degrees – \bar{k}-order, WHOIS at the top
Distance

- $d(x)$ - distance distribution, the probability that two random nodes are at a distance x hops from each other

- interplay between \bar{k}-order and r-order
 - skitter - most disassortative \implies shortest average distance
 - BGP - less dense, lower \bar{k} \implies larger average distance
 - WHOIS - more assortative, higher r \implies larger average distance
Topology Characteristics

- other topology metrics:
 - rich club connectivity
 - coreness
 - eccentricity
 - betweenness
 - spectrum
 - www.caida.org/analysis/topology/as_topo_comparisons/

- statistics tables, plots, and calculated data used to draw them

- metric values and differences in the three graphs can be explained using \bar{k}-order and r-order
Comparison with random graph models

- Random graph models:
 - 0K – reproduces average degree \bar{k}
 - 1K – reproduces degree distribution $P(k)$
 - power-law random graphs (PLRG)
 - 2K – reproduces JDD $P(k_1, k_2)$

- 0K- and 1K-random graphs are *uncorrelated*
 (when forced correlations are not taken into account)
 - assortativity coefficient $r = 0$
 - the average neighbor connectivity $k_{nn}(k)$ is constant
 - clustering $C(k)$ is constant
Comparison with random graph models (cont.)

- **skitter** graph
 - most disassortative, $r = -0.24$
 - average neighbor connectivity varies by two orders of magnitude
 \Rightarrow is not 1K-random
 - cannot be approximated by PLRG

- **WHOIS** graph
 - almost uncorrelated, $r = -0.04$
 - average neighbor connectivity varies by a factor of two
 \Rightarrow the closest to 1K-random
 - but its degree distribution does not follow power-law
Clustering as a Measure of Model Accuracy

- **skitter** graph
 - clustering is close to 2K-random one
 \[\Rightarrow 2K\text{-random model reproduces skitter topology} \]

- **WHOIS** graph
 - clustering is functionally different from 2K-random one
 - mean clustering is closest to 1K-random one
Conclusions

- Graphs derived from three sources of Internet topology data
 - skitter
 - BGP
 - WHOIS

- Wide range of topology metrics

- JDD $P(k_1, k_2)$ plays a definitive role
 - coarse summary statistics of JDD, \bar{k} and r, explain the relative order of all other metrics

- Which data source is most accurate?
 - each approximates a different view of the Internet
 - each has its own limitations and inaccuracies
 - differences are quantitative, not qualitative

\Rightarrow combine the reliable information from all sources for the most complete view