The Joint Degree Distribution as a Definitive Metric of the Internet AS-level Topologies

Priya Mahadevan, Dimitri Krioukov, Marina Fomenkov, Brad Huffaker, Xenofontas Dimitropoulos, kc claffy, Amin Vahdat CAIDA, SDSC, UC San Diego

Published in ACM SIGCOMM CCR, January 2006 www.caida.org/publications/papers/2006/as_topology

2006 ISMA WIT, San Diego, May 2006

Plan

- Data sources:
 - collection methodologies
 - limitations
- Graph metrics
 - definitions
 - values in our graphs
 - interdependencies
- Joint Degree Distribution (JDD) the definitive metric
 - defines values of other metrics
 - captures crucial graph properties
- Comparison of observed graphs with random graph models

Data Sources - 1

- BGP Tables
 - Border Gateway Protocol for routing among ASes
- RouteViews collects BGP routing tables
 www.routeviews.org
 - 7 collectors, each has a number of globally placed peers
 - archives both static snapshots and dynamic data
 - data are publicly available
- For this study data from March 2004
 - used collector with the largest # of peers = 68
 - discarded AS-sets and private ASes
 - merged 31 daily graphs into one graph

=> BGP graph

Data Sources - 2

• Traceroute

sequence of IP hops along the forward path from the to a given destinations

- CAIDA traceroute-based tool *skitter*
 - continuous measurements since 1998
 - more than 20 monitors all over the world
 - destination list of about a million IPv4 addresses
- For this study data from March 2004
 - mapped IP addresses to origin AS numbers using BGP tables from RouteViews
 - discarded about 5% of links ambiguous mappings, measurement inaccuracies
 - merged 31 daily graphs into one graph

=> skitter graph

 daily derived AS-level topology graphs available at www.caida.org//tools/measurement/skitter/as_adjacencies.xml

Data Sources - 3

- WHOIS
 - a collection of databases with AS peering information
 - manually maintained
 - no timely updates
 - *RIPE WHOIS* is the most current and reliable (but covers mostly European infrastructure)
- For this study -
 - RIPE WHOIS database dump, April 7, 2004
 - looked for records indicating links btw ASes
 - discarded external and private ASes

=> WHOIS graph

Data Sources (cont.)

The three graphs present different views of the Internet

- skitter graph
 - topology of actual Internet traffic flows
 - => data plane
- BGP graph
 - topology of the routing system
 - => control plane
- WHOIS graph
 - topology created by human actions
 - => management plane
- both skitter and BGP are *traceroute-like* explorations
- WHOIS reports peering arrangements made by humans
- we verified that differences betwen WHOIS and the other two graphs are not due to geographical bias

Topology Characteristics

Average Degree

- n = number of nodes (or graph size)
 m = number of links
- average node degree $\overline{k} = 2m/n$
- the coarsest connectivity characteristic

	skitter	BGP tables	WHOIS
Number of nodes (n)	9,204	17,446	7,485
Number of edges (m)	28,959	40,805	56,949
Avg node degree (\overline{k})	6.29	4.68	15.22

• \bar{k} -order: BGP - skitter - WHOIS increasing average degree

Degree Distribution

• n(k) = number of nodes of degree k (k-degree nodes)

- both PDFs and CCDFs are in the \overline{k} -order, BGP-skitter-WHOIS
- skitter graph is closest to power law, $\gamma = -2.25$
- WHOIS graph is not power law at all has excess of medium-degree nodes

Joint Degree Distribution (JDD)

- m(k₁, k₂) = number of edges connecting nodes of degrees k₁ and k₂
- $P(k_1, k_2) = \mu(k_1, k_2) \times m(k_1, k_2)/(2m)$ (where $\mu(k_1, k_2)$ is 1 if $k_1 = k_2$ and 2 otherwise)
 - probability that an edge connects k_1 and k_2 -degree nodes
- JDD contains more information about connectivity in a graph than degree distribution
- JDD provides information about 1-hop neighborhoods around a node
- given JDD $P(k_1, k_2)$, one can always restore P(k) and \overline{k}

Joint Degree Distribution (JDD) - cont.

• summary statistic of JDD: assortativity coefficient

 $r \sim \sum_{k_1,k_2=1}^{k_{max}} k_1 k_2 (P(k_1,k_2) - k_1 k_2 P(k_1) P(k_2) / \bar{k}^2)$

 $-1 \le r \le 1$ - directly related to *likelihood* defined by Li *et al.*

- *disassortative* networks with r < 0:
 - excess of *radial* links connecting nodes of dissimilar degrees
 - vulnerable to random failures and targeted attacks
- *assortative* networks with r > 0:
 - excess of *tangential* links connecting nodes of similar degrees

Joint Degree Distribution (JDD) - cont.

• all three our graphs are disassortative

	skitter	BGP tables	WHOIS
Assortativity Coefficient (r)	-0.24	-0.19	-0.04

- *r*-order: WHOIS BGP skitter decreasing assortativity coefficient
- both skitter and BGP are *traceroute-like* explorations
 - discover more radial links (connecting low-degree customer ASes and high-degree large ISP ASes)

fail to detect tangential links (connecting nodes of similar degrees)

 WHOIS-based methodology finds abundant medium-degree tangential links

= > WHOIS graph is more assortative

Joint Degree Distribution (JDD) - cont.

• summary statistic of JDD:

the average neighbor connectivity $k_{nn}(k) = \sum_{k'=1}^{k_{max}} k' P(k'|k)$

- the average neighbor degree of the average k-degree node

- low degrees -r-order, skitter at the top
- high degrees \overline{k} -order, WHOIS at the top

Clustering

• $\bar{m}_{nn}(k)$ = number of links between the neighbors of *k*-degree nodes

k(k-1)/2 = the maximum possible number of such links

• $C(k) = 2\bar{m}_{nn}(k)/[k(k-1)] - \text{local clustering}$

- low degrees -r-order, skitter at the top
- high degrees \overline{k} -order, WHOIS at the top

Distance

• d(x) - distance distribution, the probability that two random nodes are at a distance x hops from each other

- interplay between \overline{k} -order and r-order
 - skitter most disassortative => shortest average distance
 - BGP less dense, lower $\overline{k} =>$ larger average distance
 - WHOIS more assortative, higher r => larger average distance

Topology Characteristics

- other topology metrics:
 - rich club connectivity
 - coreness
 - eccentricity
 - betweenness
 - spectrum

www.caida.org/analysis/topology/as_topo_comparisons/

- statistics tables, plots, and calculated data used to draw them
- metric values and differences in the three graphs can be explained using \bar{k} -order and r-order

Comparison with random graph models

- Random graph models:
 - OK reproduces average degree \overline{k}
 - 1K reproduces degree distribution P(k)
 - power-law random graphs (PLRG)
 - 2K reproduces JDD $P(k_1, k_2)$
- 0K- and 1K-random graphs are *uncorrelated* (when forced correlations are not taken into account)
 - assortativity coefficient r = 0
 - the average neighbor connectivity $k_{nn}(k)$ is constant
 - clustering C(k) is constant

Comparison with random graph models (cont.)

- skitter graph
 - most disassortative, r = -0.24
 - average neighbor connectivity varies by two orders of magnitude
 - => is not 1K-random

cannot be approximated by PLRG

- WHOIS graph
 - almost uncorrelated, r = -0.04
 - average neighbor connectivity varies by a factor of two
 - => the closest to 1K-random

but its degree distribution does not follow power-law

Clustering as a Measure of Model Accuracy

- skitter graph
 - clustering is close to 2K-random one
 - => 2K-random model reproduces skitter topology
- WHOIS graph
 - clustering is functionally different from 2K-random one
 - mean clustering is closest to 1K-random one

Conclusions

- Graphs derived from three sources of Internet topology data
 - skitter
 - BGP
 - WHOIS
- Wide range of topology metrics
- JDD $P(k_1, k_2)$ plays a definitive role
 - coarse summary statistics of JDD, \overline{k} and r, explain the relative order of all other metrics
- which data source is most accurate?
 - each approximates a different view of the Internet
 - each has its own limitations and inaccuracies
 - differences are quantitative, not qualitative
- => combine the reliable information from all sources for the most complete view