<u>A Basis for Systematic Analysis and</u> <u>Generation of Network Topologies</u>

> Priya Mahadevan UC San Diego

Dmitri Krioukov (CAIDA), Kevin Fall (Intel Research), Amin Vahdat (UC San Diego) Importance of Network Topology

- Performance of protocols and applications
 - Routing, overlay networks

For example: new routing protocol might offer X-time smaller routing tables for today but scale Y-time worse, with Y >> X

- Robustness of the network
- Traffic engineering
- Network management
- Spread of worms, etc.

Methodologies of Topology Research

Topology Evaluation Metrics

- Distance distribution
- Betweenness
- Clustering
- Assortativity coefficient / likelihood
- Spectrum

Problem in generating graphs?

- No known techniques to produce graphs with a given form of distance distribution, betweenness, etc.
- What if a new important metric is discovered?

Our Approach

Enumerable set of properties P_d , d = 0, 1, ... that satisfy:

- *Constructibility*: construct graphs having these properties
- Inclusion: property P_d subsumes P_j where j = 0, ..., d-1
- *Convergence:* As *d* increases, the set of graphs having property P_d converges to the original graph G

Connectivity is the most basic property of network topologies

- We consider degree correlations among increasingly larger set of connected nodes
- P₀, P₁, P₂,... P_n correspond to degree correlations among connected nodes of size 0, 1, 2, ... n

Outline

- Background
- Methodology
 - Graph generation
- Validation
 - AS-level graph (skitter)
 - Router-level graph (HOT)
- Limitations
- Conclusions

Our dK-series

dK-series: degree correlations within non-isomorphic simple connected subgraphs of size *d*

Tag	Name	Subgraphs of size:	Symbolics
0K	Average node degree	0	
1K	Node degree distribution	1	$\mathbf{\cdot}$
2K	Joint degree distribution	2	$\overline{\mathbf{\Theta}}$
3K	Joint edge degree distribution	3	
nK	Full degree distribution	n = # of nodes	

More on dK-series

dK-series : degree correlations within non-isomorphic simple connected subgraphs of size *d*

How groups of *d*-nodes with different degrees interconnect

- *0K* (average degree)
- *1K* (degree distribution)
- 2K

Connectivity between nodes having degrees *k1* and *k2*

• *3K*

Connectivity among nodes having degrees k1, k2 and k3

Example

Compute probability distributions for each

<u>dK-graphs</u>

- Graphs associated with each P_d Original graph belongs to all subsets of <u>*dK*</u>-graphs (*d*=0,..*n*)
- As *d* increases, *dK* graphs converge to the original graph
- dK-random graph reproduces the specified property P_d , random with respect to all other properties
- What value of *d* is sufficient for practical purposes to reproduce Internet topologies?

Constructing dK-random graphs

- Stochastic approach
 - In theory, can be generalized to any *d*; does not work well in practice
- Pseudograph (eg: PLRG)
 - In its original form, its only for 1K
 - Extended it for 2K, but not beyond
- Rewiring
 - Perturb the given graph (swap pairs of edges) such that property P_d is preserved

- Targeting Rewiring (Metropolis Dynamics)
 - Rewire graph such that it moves from reproducing P_{d-1} to P_d

Outline

- Background
- Methodology
 - Graph generation
- Validation
 - AS-level graph (skitter)
 - Router-level graph (HOT)
- Limitations
- Conclusions

Validation

- We generated *OK*, *1K*, *2K* and *3K*-random graphs
- Compare our generated *dK*-random graphs with the original graph w.r.t. important topology metrics
- AS-level validation: skitter, BGP tables, WHOIS
- Router-level validation: HOT

Scalar metrics comparison for skitter

Metric	0K	1K	2K	3К	skitter
< <i>k</i> >	6.31	6.34	6.29	6.29	6.29
r	0	-0.24	-0.24	-0.24	-0.24
< <i>C</i> >	0.001	0.25	0.29	0.46	0.46
d	5.17	3.11	3.08	3.09	3.12
$\sigma_{\! d}$	0.27	0.4	0.35	0.35	0.37
λ_{l}	0.2	0.03	0.15	0.1	0.1
λ_{n-1}	1.8	1.97	1.85	1.9	1.9

Scalar Metrics for HOT

Metric	ОК	1K	2 <i>K</i>	3К	НОТ
$<\!\!k\!>$	2.47	2.59	2.18	2.10	2.10
r	-0.05	-0.14	-0.23	-0.22	-0.22
< <i>C</i> >	0.002	0.009	0.001	0	0
d	8.48	4.41	6.32	6.55	6.81
$\sigma_{\! d}$	1.23	0.72	0.71	0.84	0.57
λ_{I}	0.01	0.034	0.005	0.004	0.004
λ_{n-1}	1.989	1.967	1.996	1.997	1.997

Results summary

- For AS-level topologies:
 - *dK*-series convergence is fast
 - *2K*-random graphs capture most metrics; need *3K* for clustering
- For router-level topologies:
 - *dK*-series convergence is slower
 - *3K*-random graphs reproduce most metrics
- Router-level topologies are less random; reflect careful design and planning

Discussions and Limitations

- For graphs that we considered, d=3 seems sufficient
- Not all graphs can be approximated using 3K
- What if we have to reproduce a new metric?
 - Increase *d*
 - Extreme case of *d* = *n*, generated graphs must be isomorphic to the given graph
 - Computational complexity grows rapidly with *d*
- Cannot discover evolutionary growth of a network

Conclusions

- No need to capture individual metrics
- Our *dK*-series , *d* = 0, 1, ... *n* specify degree correlations within non-isomorphic simple connected subgraphs of size *d*
- By increasing *d*, we capture more complex properties of a given graph
- *d*=3 is sufficient to reproduce important metrics of observed Internet graphs

More Information

1. A Basis for Systematic Analysis of Network Topologies, Priya Mahadevan, Dmitri Krioukov, Kevin Fall, and Amin Vahdat. ACM SIGCOMM 2006.